日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              久久久视频精品| 浪潮色综合久久天堂| 亚洲欧美在线免费| 亚洲欧美国产制服动漫| 欧美一区二区三区免费观看| 亚洲欧美视频一区二区三区| 欧美一区二区日韩| 欧美成人精品不卡视频在线观看| 免费日韩av片| 欧美性猛交xxxx免费看久久久 | 国产一区二区三区免费不卡| 国产一区二区三区av电影| 黄色在线一区| 日韩视频免费| 欧美亚洲一区| 欧美激情精品久久久久久大尺度| 欧美日韩午夜在线视频| 国产日韩欧美视频| 亚洲精品国久久99热| 小处雏高清一区二区三区| 美女网站在线免费欧美精品| 欧美特黄a级高清免费大片a级| 国产日韩欧美在线看| 亚洲伦理在线观看| 久久九九全国免费精品观看| 欧美精品一区三区| 激情成人中文字幕| 亚洲一区在线免费| 男人天堂欧美日韩| 国产真实乱子伦精品视频| 9人人澡人人爽人人精品| 久久久久久**毛片大全| 国产精品久久久久久久久| 尤物视频一区二区| 羞羞漫画18久久大片| 欧美日韩综合另类| 亚洲精品免费在线观看| 久久高清福利视频| 国产精品女同互慰在线看| 亚洲美女中出| 久久在精品线影院精品国产| 国产麻豆91精品| 亚洲一区二区精品在线观看| 欧美韩日一区二区| 亚洲电影免费观看高清完整版在线观看 | 欧美午夜精品理论片a级按摩| 影音先锋日韩有码| 久久国产高清| 国产亚洲激情| 欧美影院成年免费版| 国产精品网曝门| 亚洲砖区区免费| 欧美性感一类影片在线播放| 亚洲精品一区二区三区四区高清| 狂野欧美性猛交xxxx巴西| 国产丝袜一区二区| 久久精品国产免费| 国产亚洲激情| 久久久久成人网| 狠狠色香婷婷久久亚洲精品| 欧美一区二区三区在线观看| 国产欧美va欧美不卡在线| 亚洲男人影院| 国产日韩欧美综合在线| 久久成人18免费网站| 国产香蕉久久精品综合网| 欧美中在线观看| 永久免费毛片在线播放不卡| 老司机久久99久久精品播放免费| 好看的日韩av电影| 鲁大师成人一区二区三区| 亚洲激情另类| 欧美色图首页| 香蕉亚洲视频| 黄色综合网站| 欧美国产视频一区二区| 亚洲精品乱码久久久久久日本蜜臀| 欧美国产日本| 国产亚洲欧美另类一区二区三区| 欧美一区二区三区在线看| 国产一区二区三区丝袜 | 欧美一区二区视频在线观看2020| 国产欧美日韩精品专区| 久久久久国产精品人| 91久久精品一区二区别| 国产精品久久999| 久久久国产91| 99re6热在线精品视频播放速度| 国产精品欧美风情| 狂野欧美一区| 亚洲一区二区三区三| 在线播放日韩| 国产精品麻豆va在线播放| 久久久久久久综合日本| 宅男噜噜噜66一区二区| 好吊一区二区三区| 欧美日韩综合在线| 巨乳诱惑日韩免费av| 亚洲自拍都市欧美小说| 136国产福利精品导航网址应用| 欧美日韩国产一中文字不卡 | 国产精品久久久久久久免费软件| 久久精品视频亚洲| 亚洲午夜av在线| 在线观看视频日韩| 国产欧美韩国高清| 欧美日本不卡高清| 六月丁香综合| 久久国产视频网| 亚洲一级特黄| 亚洲免费黄色| 亚洲国产裸拍裸体视频在线观看乱了中文 | 久久久欧美精品sm网站| 亚洲一区一卡| 日韩网站在线观看| 亚洲电影在线看| 黄色在线一区| 国产欧美日韩亚洲| 国产精品久久久久久久久免费桃花| 欧美国产成人精品| 久久久夜色精品亚洲| 午夜精品视频在线| 一区二区三区高清在线| 亚洲乱码视频| 亚洲日本国产| 亚洲黄网站在线观看| 韩日在线一区| 狠狠久久婷婷| 黄色成人av| 狠狠色噜噜狠狠狠狠色吗综合| 国产精品一区二区三区成人| 国产精品福利片| 国产精品久久久久一区| 国产精品毛片a∨一区二区三区| 欧美偷拍另类| 国产精品久久久91| 国产精品成人一区| 国产精品久久久久影院色老大| 国产精品av久久久久久麻豆网| 欧美视频不卡中文| 国产精品久久久久一区二区三区共| 欧美日韩在线一二三| 欧美日韩在线一区| 国产精品区一区二区三区| 国产麻豆综合| 韩日成人在线| 亚洲精品视频中文字幕| 夜夜嗨av一区二区三区四季av| 制服丝袜激情欧洲亚洲| 亚洲一区亚洲二区| 欧美一区二区在线播放| 久热精品在线视频| 欧美理论电影网| 国产精品网站视频| 黑人极品videos精品欧美裸| 亚洲福利精品| 一二三四社区欧美黄| 欧美一二三区精品| 久久综合国产精品台湾中文娱乐网| 欧美插天视频在线播放| 欧美日韩网站| 国自产拍偷拍福利精品免费一| 亚洲大胆美女视频| 亚洲网站在线观看| 久久狠狠亚洲综合| 欧美日韩美女| 国产一区二区三区成人欧美日韩在线观看 | 男人的天堂成人在线| 欧美三级在线| 国际精品欧美精品| 99这里只有久久精品视频| 欧美一区二区三区日韩| 欧美精品国产精品| 国产亚洲精品v| 一区二区三区精品在线| 久久久精品日韩| 欧美日韩一区二区三区在线 | 国产老肥熟一区二区三区| 亚洲第一精品电影| 亚洲欧美日本国产专区一区| 欧美不卡三区| 国产日产亚洲精品| 99这里只有精品| 美女福利精品视频| 国产麻豆综合| 一区二区日本视频| 久久偷窥视频| 欧美午夜激情视频| 亚洲大片av| 欧美在线不卡视频| 欧美色一级片| 亚洲精品裸体| 裸体丰满少妇做受久久99精品| 欧美日韩在线第一页| 亚洲黄页视频免费观看| 欧美在线观看天堂一区二区三区| 欧美日韩中文字幕精品| 日韩视频一区二区| 欧美精品啪啪| 亚洲久久视频|