代寫AIML 2023-2024 Coursework

            時(shí)間:2024-03-17  來源:  作者: 我要糾錯(cuò)


            AIML 2023-2024 Coursework
            March 12, 2024
              Figure 1: Convolutional neural network for coursework assignment.
            Problem The goal of this take-home assignment is to implement, in Python, a simple two-layer convolutional neural network (CNN) with five inputs x1, . . . , x5, four hidden nodes z1, . . . , z4 and one output y with ReLU activations, according to the diagram shown in Figure 1. The hidden layer and output of the CNN is to be computed along with the gradient of the hidden layer and output with respect to parameter w1. The values oftheparameterswillbew1 =1.2,w2 =−0.2,v1 =−0.3,v2 =0.6,v3 =1.3andv4 =−1.5.
            Instructions The CNN implementation is to be computed using a single Python function in single Python file. The interface to the function should be in the precise format,
            y, z = convnet(x) (1)
            where x = [x1, x2, x3, x4, x5] is a list of five numerical inputs (for example, a set of real numbers x=[0.3,−1.5,0.7,2.1,0.1]), and it should return the value of y as a number of the type dual and, z=[z1,z2,z3,z4] as a list of four numbers of type dual defined in the course code module ad.py. Therefore, when testing, you should expect to import this module. The implementation should use the specific values of the weight parameters given above.
            Submission TopreparethePythoncodefileforsubmission,itmustbenamedintheformatinitials_studentid.py, for instance if your initials are ’AJD’ and your ID is 5716631 then your file should be named ajd_5716631.py. Submit the file through the Assignments page on Canvas. The deadline for submissions is 12pm UK time, 21st March 2024.
            Marking The function will be marked automatically by calling it inside Python, and checking the results against a model solution. A fully correct solution will receive 20 marks. A solution which has a partially correct
            請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

            標(biāo)簽:

            掃一掃在手機(jī)打開當(dāng)前頁
          1. 上一篇:代寫COMP3411/9814 Bridge Puzzle編程代做
          2. 下一篇:COMP2207 代做、R 程序設(shè)計(jì)代寫
          3. 無相關(guān)信息
            昆明生活資訊

            昆明圖文信息
            蝴蝶泉(4A)-大理旅游
            蝴蝶泉(4A)-大理旅游
            油炸竹蟲
            油炸竹蟲
            酸筍煮魚(雞)
            酸筍煮魚(雞)
            竹筒飯
            竹筒飯
            香茅草烤魚
            香茅草烤魚
            檸檬烤魚
            檸檬烤魚
            昆明西山國家級(jí)風(fēng)景名勝區(qū)
            昆明西山國家級(jí)風(fēng)景名勝區(qū)
            昆明旅游索道攻略
            昆明旅游索道攻略
          4. NBA直播 短信驗(yàn)證碼平臺(tái) 幣安官網(wǎng)下載 歐冠直播 WPS下載

            關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

            Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
            ICP備06013414號(hào)-3 公安備 42010502001045

            主站蜘蛛池模板: 久久久91精品国产一区二区三区| 色多多免费视频观看区一区| 久99精品视频在线观看婷亚洲片国产一区一级在线 | 好吊视频一区二区三区| 无码人妻一区二区三区在线| 日本精品一区二区在线播放 | 无码人妻一区二区三区兔费| 久久综合精品国产一区二区三区| 精品无码人妻一区二区三区18| 亚洲无线码在线一区观看| 无码人妻精品一区二区三18禁| 国产一区精品视频| 无码少妇精品一区二区免费动态| 福利一区二区在线| 无码福利一区二区三区| 精品久久一区二区三区| 波多野结衣中文字幕一区| 亚洲高清毛片一区二区| 人妻少妇久久中文字幕一区二区 | 国产无套精品一区二区| 国产伦精品一区二区三区无广告| 亚洲福利秒拍一区二区| 国产精品视频第一区二区三区| 亚洲AV无码一区二区三区在线观看| 亚洲综合av一区二区三区 | 国产精品视频无圣光一区| 亚洲一区在线视频| 人妻久久久一区二区三区| 怡红院AV一区二区三区| 蜜臀Av午夜一区二区三区| 狠狠综合久久AV一区二区三区| 一区二区三区在线看| 白丝爆浆18禁一区二区三区| 日本精品啪啪一区二区三区| 理论亚洲区美一区二区三区| 中文字幕日韩欧美一区二区三区 | 韩国精品一区视频在线播放 | 亚洲一区影音先锋色资源| 国偷自产一区二区免费视频| 国产成人无码AV一区二区 | 国产精品第一区第27页|