代寫AIML 2023-2024 Coursework

            時(shí)間:2024-03-17  來源:  作者: 我要糾錯(cuò)


            AIML 2023-2024 Coursework
            March 12, 2024
              Figure 1: Convolutional neural network for coursework assignment.
            Problem The goal of this take-home assignment is to implement, in Python, a simple two-layer convolutional neural network (CNN) with five inputs x1, . . . , x5, four hidden nodes z1, . . . , z4 and one output y with ReLU activations, according to the diagram shown in Figure 1. The hidden layer and output of the CNN is to be computed along with the gradient of the hidden layer and output with respect to parameter w1. The values oftheparameterswillbew1 =1.2,w2 =−0.2,v1 =−0.3,v2 =0.6,v3 =1.3andv4 =−1.5.
            Instructions The CNN implementation is to be computed using a single Python function in single Python file. The interface to the function should be in the precise format,
            y, z = convnet(x) (1)
            where x = [x1, x2, x3, x4, x5] is a list of five numerical inputs (for example, a set of real numbers x=[0.3,−1.5,0.7,2.1,0.1]), and it should return the value of y as a number of the type dual and, z=[z1,z2,z3,z4] as a list of four numbers of type dual defined in the course code module ad.py. Therefore, when testing, you should expect to import this module. The implementation should use the specific values of the weight parameters given above.
            Submission TopreparethePythoncodefileforsubmission,itmustbenamedintheformatinitials_studentid.py, for instance if your initials are ’AJD’ and your ID is 5716631 then your file should be named ajd_5716631.py. Submit the file through the Assignments page on Canvas. The deadline for submissions is 12pm UK time, 21st March 2024.
            Marking The function will be marked automatically by calling it inside Python, and checking the results against a model solution. A fully correct solution will receive 20 marks. A solution which has a partially correct
            請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

            標(biāo)簽:

            掃一掃在手機(jī)打開當(dāng)前頁
          1. 上一篇:代寫COMP3411/9814 Bridge Puzzle編程代做
          2. 下一篇:COMP2207 代做、R 程序設(shè)計(jì)代寫
          3. 無相關(guān)信息
            昆明生活資訊

            昆明圖文信息
            蝴蝶泉(4A)-大理旅游
            蝴蝶泉(4A)-大理旅游
            油炸竹蟲
            油炸竹蟲
            酸筍煮魚(雞)
            酸筍煮魚(雞)
            竹筒飯
            竹筒飯
            香茅草烤魚
            香茅草烤魚
            檸檬烤魚
            檸檬烤魚
            昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
            昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
            昆明旅游索道攻略
            昆明旅游索道攻略
          4. 高仿包包訂製 幣安官網(wǎng)下載

            關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

            Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
            ICP備06013414號(hào)-3 公安備 42010502001045

            主站蜘蛛池模板: 91久久精一区二区三区大全| 国产aⅴ一区二区| 免费在线观看一区| 日韩久久精品一区二区三区| 在线一区二区三区| 国产一区二区三区在线观看免费| 视频一区二区三区免费观看| 日韩AV在线不卡一区二区三区 | 亚洲伦理一区二区| 中文字幕一区二区精品区| 成人H动漫精品一区二区 | 国产日韩精品一区二区在线观看播放 | 久久精品无码一区二区三区不卡| 97久久精品无码一区二区 | 无码人妻精品一区二| 中文字幕精品亚洲无线码一区应用 | 在线视频亚洲一区| 国产一区二区内射最近更新| 国产在线乱子伦一区二区| 国产一区中文字幕| 97av麻豆蜜桃一区二区| 国产一区二区三区露脸| 精品无码一区二区三区爱欲| 国产成人av一区二区三区在线 | 国产精品亚洲不卡一区二区三区| 亚洲国产精品一区二区三区久久 | 亚洲色无码专区一区| 久久国产精品免费一区二区三区| 中文字幕久久亚洲一区| 国产精品无码一区二区在线| 日本欧洲视频一区| 精品不卡一区中文字幕| 伊人色综合一区二区三区影院视频| 国产精品视频无圣光一区| 91精品一区二区三区在线观看| 国产精品va一区二区三区| 精品乱码一区内射人妻无码| 性色AV 一区二区三区| 久久精品视频一区二区三区 | 99久久精品国产免看国产一区 | 国产在线精品一区二区在线观看 |