日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

AI6126代做、Python設(shè)計程序代寫

時間:2024-04-12  來源:  作者: 我要糾錯



2023-S2 AI6126 Project 2
Blind Face Super-Resolution
Project 2 Specification (Version 1.0. Last update on 22 March 2024)
Important Dates
Issued: 22 March 2024
Release of test set: 19 April 2023 12:00 AM SGT
Due: 26 April 2023 11:59 PM SGT
Group Policy
This is an individual project
Late Submission Policy
Late submissions will be penalized (each day at 5% up to 3 days)
Challenge Description
Figure 1. Illustration of blind face restoration
The goal of this mini-challenge is to generate high-quality (HQ) face images from the
corrupted low-quality (LQ) ones (see Figure 1) [1]. The data for this task comes from
the FFHQ. For this challenge, we provide a mini dataset, which consists of 5000 HQ
images for training and 400 LQ-HQ image pairs for validation. Note that we do not
provide the LQ images in the training set. During the training, you need to generate
the corresponding LQ images on the fly by corrupting HQ images using the random
second-order degradation pipeline [1] (see Figure 2). This pipeline contains 4 types
of degradations: Gaussian blur, Downsampling, Noise, and Compression. We will
give the code of each degradation function as well as an example of the degradation
config for your reference.
Figure 2. Illustration of second-order degradation pipeline during training
During validation and testing, algorithms will generate an HQ image for each LQ face
image. The quality of the output will be evaluated based on the PSNR metric
between the output and HQ images (HQ images of the test set will not be released).
Assessment Criteria
In this challenge, we will evaluate your results quantitatively for scoring.
Quantitative evaluation:
We will evaluate and rank the performance of your network model on our given 400
synthetic testing LQ face images based on the PSNR.
The higher the rank of your solution, the higher the score you will receive. In general,
scores will be awarded based on the Table below.
Percentile
in ranking
≤ 5% ≤ 15% ≤ 30% ≤ 50% ≤ 75% ≤ 100% *
Scores 20 18 16 14 12 10 0
Notes:
● We will award bonus marks (up to 2 marks) if the solution is interesting or
novel.
● To obtain more natural HQ face images, we also encourage students to
attempt to use a discriminator loss with a GAN during the training. Note that
discriminator loss will lower the PSNR score but make the results look more
natural. Thus, you need to carefully adjust the GAN weight to find a tradeoff
between PSNR and perceptual quality. You may earn bonus marks (up to 2
marks) if you achieve outstanding results on the 6 real-world LQ images,
consisting of two slightly blurry, two moderately blurry, and two extremely
blurry test images. (The real-world test images will be released with the 400
test set) [optional]
● Marks will be deducted if the submitted files are not complete, e.g., important
parts of your core codes are missing or you do not submit a short report.
● TAs will answer questions about project specifications or ambiguities. For
questions related to code installation, implementation, and program bugs, TAs
will only provide simple hints and pointers for you.
Requirements
● Download the dataset, baseline configuration file, and evaluation script: here
● Train your network using our provided training set.
● Tune the hyper-parameters using our provided validation set.
● Your model should contain fewer than 2,276,356 trainable parameters, which
is 150% of the trainable parameters in SRResNet [4] (your baseline network).
You can use
● sum(p.numel() for p in model.parameters())
to compute the number of parameters in your network. The number of
parameters is only applicable to the generator if you use a GAN.
● The test set will be available one week before the deadline (this is a common
practice of major computer vision challenges).
● No external data and pre-trained models are allowed in this mini
challenge. You are only allowed to train your models from scratch using the
5000 image pairs in our given training set.
Submission Guidelines
Submitting Results on CodaLab
We will host the challenge on CodaLab. You need to submit your results to CodaLab.
Please follow the following guidelines to ensure your results are successfully
recorded.
● The CodaLab competition link:
https://codalab.lisn.upsaclay.fr/competitions/18233?secret_key
=6b842a59-9e76-47b1-8f56-283c5cb4c82b
● Register a CodaLab account with your NTU email.
● [Important] After your registration, please fill in the username in the Google
Form: https://forms.gle/ut764if5zoaT753H7
● Submit output face images from your model on the 400 test images as a zip
file. Put the results in a subfolder and use the same file name as the original
test images. (e.g., if the input image is named as 00001.png, your result
should also be named as 00001.png)
● You can submit your results multiple times but no more than 10 times per day.
You should report your best score (based on the test set) in the final report.
● Please refer to Appendix A for the hands-on instructions for the submission
procedures on CodaLab if needed.
Submitting Report on NTULearn
Submit the following files (all in a single zip file named with your matric number, e.g.,
A12345678B.zip) to NTULearn before the deadline:
● A short report in pdf format of not more than five A4 pages (single-column,
single-line spacing, Arial 12 font, the page limit excludes the cover page and
references) to describe your final solution. The report must include the
following information:
○ the model you use
○ the loss functions
○ training curves (i.e., loss)
○ predicted HQ images on 6 real-world LQ images (if you attempted the
adversarial loss during training)
○ PSNR of your model on the validation set
○ the number of parameters of your model
○ Specs of your training machine, e.g., number of GPUs, GPU model
You may also include other information, e.g., any data processing or
operations that you have used to obtain your results in the report.
● The best results (i.e., the predicted HQ images) from your model on the 400
test images. And the screenshot on Codalab of the score achieved.
● All necessary codes, training log files, and model checkpoint (weights) of your
submitted model. We will use the results to check plagiarism.
● A Readme.txt containing the following info:
○ Your matriculation number and your CodaLab username.
○ Description of the files you have submitted.
○ References to the third-party libraries you are using in your solution
(leave blank if you are not using any of them).
○ Any details you want the person who tests your solution to know when
they test your solution, e.g., which script to run, so that we can check
your results, if necessary.
Tips
1. For this project, you can use the Real-ESRGAN [1] codebase, which is based
on BasicSR toolbox that implements many popular image restoration
methods with modular design and provides detailed documentation.
2. We included a sample Real-ESRGAN configuration file (a simple network, i.e.,
SRResNet [4]) as an example in the shared folder. [Important] You need to:
a. Put “train_SRResNet_x4_FFHQ_300k.yml” under the “options” folder.
b. Put “ffhqsub_dataset.py” under the “realesrgan/data” folder.
The PSNR of this baseline on the validation set is around 26.33 dB.
3. For the calculation of PSNR, you can refer to ‘evaluate.py’ in the shared folder.
You should replace the corresponding path ‘xxx’ with your own path.
4. The training data is important in this task. If you do not plan to use MMEditing
for this project, please make sure your pipeline to generate the LQ data is
identical to the one in the configuration file.
5. The training configuration of GAN models is also available in Real-ESRGAN
and BasicSR. You can freely explore the repository.
6. The following techniques may help you to boost the performance:
a. Data augmentation, e.g. random horizontal flip (but do not use vertical
flip, otherwise, it will break the alignment of the face images)
b. More powerful models and backbones (within the complexity
constraint), please refer to some works in reference.
c. Hyper-parameters fine-tuning, e.g., choice of the optimizer, learning
rate, number of iterations
d. Discriminative GAN loss will help generate more natural results (but it
lowers PSNR, please find a trade-off by adjusting loss weights).
e. Think about what is unique to this dataset and propose novel modules.
References
[1] Wang et al., Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure
Synthetic Data, ICCVW 2021
[2] Wang et al., GFP-GAN: Towards Real-World Blind Face Restoration with Generative
Facial Prior, CVPR 2021
[3] Zhou et al., Towards Robust Blind Face Restoration with Codebook Lookup Transformer,
NeurIPS 2022
[4] C. Ledig et al., Photo-realistic Single Image Super-Resolution using a Generative
Adversarial Network, CVPR 2017
[5] Wang et al., A General U-Shaped Transformer for Image Restoration, CVPR 2022
[6] Zamir et al., Restormer: Efficient Transformer for High-Resolution Image Restoration,
CVPR 2022
Appendix A Hands-on Instructions for Submission on CodaLab
After your participation to the competition is approved, you can submit your results
here:
Then upload the zip file containing your results.
If the ‘STATUS’ turns to ‘Finished’, it means that you have successfully uploaded
your result. Please note that this may take a few minutes.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


















 

標(biāo)簽:

掃一掃在手機打開當(dāng)前頁
  • 上一篇:代做IDEPG001、代寫c/c++,Java編程設(shè)計
  • 下一篇:CSI 2120代做、代寫Python/Java設(shè)計編程
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網(wǎng)下載 歐冠直播 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        久久国产麻豆精品| 亚洲综合成人在线视频| 午夜国产不卡在线观看视频| 成人精品视频一区二区三区 | 欧美一级艳片视频免费观看| 成人午夜在线视频| 国产大片一区二区| 国内精品久久久久影院薰衣草 | 成人午夜av电影| 国产乱子伦视频一区二区三区 | 日本中文字幕一区二区视频| 亚洲成人精品一区二区| 亚洲精品ww久久久久久p站| 最新日韩在线视频| 一二三区精品视频| 日韩精品一二区| 久久99精品一区二区三区| 精品伊人久久久久7777人| 国产一区二区三区黄视频| 国产精品一区二区久久不卡 | 日韩av网站免费在线| 韩国av一区二区三区四区| 乱中年女人伦av一区二区| 青青青爽久久午夜综合久久午夜| 亚洲国产精品影院| 美女在线视频一区| www.av精品| 日韩精品一区二区三区四区视频| 国产亚洲自拍一区| 亚洲自拍偷拍图区| 欧美精品三级在线观看| 欧美日韩精品一区二区三区蜜桃| 欧美精品aⅴ在线视频| 666欧美在线视频| 久久久精品免费免费| 一区二区三区四区五区视频在线观看 | 国产麻豆视频精品| 欧美午夜精品久久久久久超碰| 日韩精品中文字幕一区 | 亚洲精品视频在线观看免费| 天天爽夜夜爽夜夜爽精品视频| 精油按摩中文字幕久久| 欧美性高清videossexo| 国产精品欧美久久久久一区二区| 日韩中文欧美在线| 欧美三级欧美一级| 亚洲色图视频网| 久久99精品久久久久久动态图 | 精品国产乱码久久久久久牛牛| 亚洲猫色日本管| eeuss鲁片一区二区三区在线看| 91麻豆精品国产91久久久使用方法| 亚洲青青青在线视频| 91视视频在线观看入口直接观看www | 国产精品不卡一区| 国产91综合一区在线观看| 在线成人小视频| 麻豆91在线看| 欧美国产日韩亚洲一区| 国产剧情一区二区| 亚洲女人****多毛耸耸8| 欧美午夜电影一区| 国产乱国产乱300精品| ...中文天堂在线一区| 日本韩国一区二区三区| 免费精品视频最新在线| 国产日韩精品一区二区三区| 青青草成人在线观看| 久久日韩粉嫩一区二区三区 | 国产乱对白刺激视频不卡| 精品sm在线观看| 97久久精品人人澡人人爽| 亚洲午夜私人影院| 久久看人人爽人人| 91.麻豆视频| 欧美午夜电影网| 97久久精品人人澡人人爽| 久久精品国产99国产| 一区二区三区在线免费观看| 日韩女优毛片在线| 麻豆精品一区二区三区| 亚洲午夜精品在线| 国产精品美女久久久久久2018| 日本久久电影网| 99国产精品久久| 成人黄色在线看| 岛国精品一区二区| 久久精品国产一区二区三| 亚洲一区成人在线| 亚洲第一综合色| 午夜成人免费电影| 中文字幕五月欧美| 国产精品久久久久久久久搜平片 | av网站免费线看精品| 另类中文字幕网| 麻豆91免费观看| 韩国一区二区在线观看| 国产精品综合久久| 日韩和欧美一区二区三区| 亚洲成a人v欧美综合天堂| 亚洲一区二区三区在线| 亚洲高清免费视频| 99国产精品国产精品久久| 欧美伦理影视网| 亚洲欧洲国产专区| 国产福利电影一区二区三区| 欧美日韩国产色站一区二区三区| 欧美高清在线视频| 日本中文一区二区三区| 色婷婷综合激情| 欧美国产日韩一二三区| 久久成人久久爱| 777亚洲妇女| 亚洲电影第三页| 欧美女孩性生活视频| 亚洲网友自拍偷拍| 91麻豆精品在线观看| 久久精品人人做人人综合| 午夜精品久久一牛影视| 91视频com| 亚洲国产一区二区a毛片| 一本色道久久综合精品竹菊| 最新欧美精品一区二区三区| 91麻豆精东视频| 亚洲男女毛片无遮挡| 色女孩综合影院| 三级不卡在线观看| 久久久精品中文字幕麻豆发布| 九九热在线视频观看这里只有精品| 欧美精品一区二区三区四区 | 欧美经典三级视频一区二区三区| 成人app下载| 国产精品免费观看视频| 91一区二区三区在线观看| 亚洲一区二三区| 2023国产一二三区日本精品2022| 国产精品白丝av| 亚洲福中文字幕伊人影院| 欧美成人性战久久| 91尤物视频在线观看| 久久精品久久精品| 一区二区三区不卡视频在线观看| 91精品国产91久久综合桃花| 成熟亚洲日本毛茸茸凸凹| 天天操天天色综合| 中文字幕国产精品一区二区| 日韩一级片网站| 欧美日韩另类一区| 色综合视频在线观看| 国产乱码一区二区三区| 日本欧美一区二区| 视频一区二区中文字幕| 亚洲免费观看高清| 亚洲男同1069视频| 成人免费在线视频| 亚洲欧美日韩在线播放| 国产精品久久久久久久久免费相片| 精品国产第一区二区三区观看体验| 色一区在线观看| 欧美撒尿777hd撒尿| 欧美剧在线免费观看网站| 国产在线视频精品一区| 国产91丝袜在线18| 一本色道久久加勒比精品| 一本一本久久a久久精品综合麻豆 一本一道波多野结衣一区二区 | 精品国产伦理网| 欧美国产日韩亚洲一区| 亚洲欧美国产三级| 日本美女一区二区三区| 久久成人免费网| 91欧美一区二区| 欧美日韩激情在线| 日韩美女天天操| 国产精品国产三级国产a| 亚洲小说春色综合另类电影| 亚洲第一福利一区| 成人永久aaa| 日韩欧美在线网站| 中文字幕不卡的av| 日本成人在线网站| 91在线视频免费91| 精品日韩成人av| 五月激情综合网| bt7086福利一区国产| 日韩免费观看高清完整版| 国产精品免费观看视频| 国产中文字幕精品| 91麻豆精品国产91久久久更新时间| 中文字幕第一区二区| 国内精品不卡在线| 日韩欧美亚洲国产精品字幕久久久| 亚洲图片激情小说| 99视频精品全部免费在线| 久久久蜜桃精品| 久久国产精品99久久人人澡| 欧美性一二三区| 一区二区免费在线| 色综合天天综合色综合av| 日本一区二区免费在线| 国产精一品亚洲二区在线视频|