日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代寫COMP34212、代做Python/c++程序設計

時間:2024-04-29  來源:  作者: 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              亚洲精品欧美| 国产精品videosex极品| 一本色道婷婷久久欧美| 国产美女精品| 欧美日本在线看| 久久久五月天| 久久精品国产99国产精品| 日韩午夜av在线| 在线观看的日韩av| 国产亚洲高清视频| 国产精品国产三级国产aⅴ入口| 欧美成人免费va影院高清| 欧美中文字幕视频| 欧美亚洲视频| 亚洲欧美在线x视频| 99视频+国产日韩欧美| 亚洲欧洲一区二区在线播放| 伊人精品成人久久综合软件| 国产深夜精品福利| 国产精品一区二区视频| 国产精品vvv| 欧美丝袜第一区| 欧美日韩综合视频| 欧美午夜视频网站| 国产精品白丝av嫩草影院 | 欧美日韩精品| 欧美日韩一区二区三区在线| 欧美精品在线观看播放| 欧美精品aa| 欧美日韩一区精品| 国产精品乱人伦一区二区| 国产精品乱人伦中文| 国产精品久久久| 国产欧美精品日韩| 国内一区二区三区| 影音先锋久久| av不卡在线观看| 午夜精品在线| 久久成人久久爱| 久久综合影视| 欧美视频在线免费| 国产精品综合网站| 亚洲国产毛片完整版 | 一区二区三区国产| 午夜亚洲福利| 欧美bbbxxxxx| 国产精品久久久免费 | 久久只有精品| 欧美精品日日鲁夜夜添| 国产精品久久夜| 国产综合色在线视频区| 亚洲日本久久| 亚洲欧美色婷婷| 免费看av成人| 国产伦精品一区二区三区视频孕妇| 国模大胆一区二区三区| 日韩视频精品在线观看| 久久精品国产91精品亚洲| 欧美成人免费视频| 国产麻豆成人精品| 日韩性生活视频| 久久精品一区四区| 欧美体内she精视频在线观看| 国产一区二区三区四区在线观看 | 欧美三级乱人伦电影| 国产日本亚洲高清| 一本久久a久久免费精品不卡| 久久精品日产第一区二区| 欧美日韩国产精品一卡| 国产在线精品自拍| 亚洲一区二区免费看| 欧美成人tv| 亚洲成人在线观看视频| 午夜精品久久久久久久白皮肤| 欧美xx69| 亚洲韩国青草视频| 久久午夜精品一区二区| 国产亚洲精品成人av久久ww| 亚洲无线观看| 欧美视频在线观看视频极品| 亚洲精品乱码久久久久久日本蜜臀| 久久er99精品| 国产日韩欧美一区在线| 亚洲女人小视频在线观看| 欧美人成在线视频| 99精品国产在热久久婷婷| 欧美大片91| 亚洲欧洲精品天堂一级 | 亚洲欧洲综合另类| 欧美成在线观看| 91久久午夜| 欧美激情国产日韩| 亚洲久色影视| 欧美日韩高清区| 艳妇臀荡乳欲伦亚洲一区| 欧美丝袜第一区| 亚洲欧美电影院| 国产欧美日韩伦理| 欧美在线高清| 激情文学综合丁香| 农夫在线精品视频免费观看| 亚洲大片在线| 欧美激情第1页| 亚洲图片欧美一区| 国产九九精品视频| 久久精品二区亚洲w码| 激情文学综合丁香| 欧美国产在线电影| 亚洲视频导航| 国产亚洲精品久| 欧美大秀在线观看| 一区二区日韩欧美| 国产亚洲va综合人人澡精品| 久久精品一区四区| 亚洲人成网站777色婷婷| 欧美日韩在线不卡一区| 久久激情久久| 亚洲精选国产| 国产日韩精品一区二区浪潮av| 麻豆精品91| 亚洲一区中文| 亚洲二区视频在线| 国产精品蜜臀在线观看| 六月天综合网| 亚洲欧美激情四射在线日| 国产在线视频不卡二| 欧美精品久久天天躁| 欧美亚洲网站| 日韩一级二级三级| 国产一区二区在线观看免费| 欧美日韩国产高清| 久久精品视频网| 亚洲无限av看| 亚洲精品国产精品国自产观看浪潮| 国产精品美女久久久久aⅴ国产馆| 久久精选视频| 亚洲欧美韩国| 在线视频一区观看| 影音先锋久久精品| 国产欧美亚洲日本| 欧美日韩一区二区视频在线观看| 久久夜色精品亚洲噜噜国产mv | 国产日韩欧美自拍| 国产精品爱啪在线线免费观看| 美女啪啪无遮挡免费久久网站| 亚洲一区国产视频| 99riav久久精品riav| 亚洲国产91| 在线视频成人| 国产在线拍偷自揄拍精品| 国产精品久久一区主播| 欧美日韩一区二区视频在线| 欧美电影专区| 欧美成人精品1314www| 久久久久久**毛片大全| 亚洲欧美日韩成人| 亚洲欧美国产高清| 亚洲视频在线观看三级| 亚洲精品激情| 亚洲精品三级| 亚洲美女网站| 一区二区免费看| 一区二区三区精密机械公司 | 国产啪精品视频| 国产女优一区| 国内自拍视频一区二区三区| 国产情人综合久久777777| 国产精品免费区二区三区观看| 欧美色精品在线视频| 欧美视频中文字幕| 国产精品资源在线观看| 国产精品日本一区二区| 国产色产综合色产在线视频| 国产亚洲激情在线| 亚洲高清123| 一二美女精品欧洲| 亚洲在线播放| 久久国产精品亚洲va麻豆| 久久躁狠狠躁夜夜爽| 欧美成人亚洲| 国产精品久久一级| 黄色欧美成人| 亚洲精品乱码久久久久久黑人 | 午夜激情一区| 久久看片网站| 欧美日韩一区二区精品| 欧美系列电影免费观看| 国产欧美精品日韩精品| 亚洲大片免费看| 亚洲午夜激情网站| 久久久国产精彩视频美女艺术照福利| 欧美a级一区二区| 国产精品久久777777毛茸茸| 国产一区二区日韩精品| 亚洲精选中文字幕| 久久se精品一区二区| 欧美另类视频| 国产一区二区丝袜高跟鞋图片| 亚洲美女免费精品视频在线观看| 亚洲欧美视频在线观看|