日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代寫COMP34212、代做Python/c++程序設計

時間:2024-04-29  來源:  作者: 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        一区二区久久久| 日韩精品中午字幕| 亚洲老妇xxxxxx| 成人精品免费视频| 中文字幕乱码日本亚洲一区二区| 国产主播一区二区三区| 久久精品一区二区| 在线免费不卡电影| 国产麻豆91精品| 自拍偷拍欧美激情| 欧美一区二区三区白人| 成人午夜在线播放| 日韩中文字幕91| www久久久久| 欧美视频日韩视频| 国产一区二区三区免费看| 亚洲免费观看高清完整版在线| 欧美三级电影网| 国产不卡一区视频| 调教+趴+乳夹+国产+精品| 中文字幕电影一区| 欧美电影免费观看完整版| 91免费版在线看| 国产一区二区不卡老阿姨| 亚洲欧美日韩国产成人精品影院| 3d动漫精品啪啪1区2区免费 | 亚洲国产日日夜夜| 欧美成人r级一区二区三区| 91久久奴性调教| 国产美女精品在线| 天天色天天操综合| 亚洲伦在线观看| 亚洲国产精品av| 正在播放一区二区| 欧美老人xxxx18| 91极品视觉盛宴| 成人av一区二区三区| 久久不见久久见免费视频7 | 久久久久久久综合日本| 欧美亚洲国产怡红院影院| 亚洲不卡av一区二区三区| 亚洲欧美日韩一区| 国产精品国产自产拍在线| 精品国产免费人成电影在线观看四季| 欧美日韩精品一区二区三区蜜桃| 91蜜桃婷婷狠狠久久综合9色| 国产呦萝稀缺另类资源| 精品一区二区在线观看| 美国一区二区三区在线播放| 日韩和的一区二区| 日韩成人伦理电影在线观看| 视频一区在线视频| 久久精品国产99| 国产美女视频一区| av电影在线观看完整版一区二区| 一本大道久久a久久综合| 色噜噜狠狠成人中文综合 | 久久影院视频免费| 国产人久久人人人人爽| 国产精品热久久久久夜色精品三区 | 99在线精品视频| 成人激情校园春色| 91国模大尺度私拍在线视频| 欧美日韩一区二区三区高清| 欧美一级久久久久久久大片| 日韩欧美在线网站| 欧美高清在线视频| 一区二区三区.www| 免费视频一区二区| 国产成人小视频| 色呦呦网站一区| 日韩写真欧美这视频| 国产日产欧美一区| 一区二区不卡在线播放| 蜜桃视频一区二区三区 | 亚洲欧美日韩一区二区三区在线观看 | 精品国产一区二区三区不卡 | 日本欧美一区二区三区乱码 | 懂色av一区二区夜夜嗨| 成人午夜在线视频| 欧美性受极品xxxx喷水| 欧美刺激脚交jootjob| 最新成人av在线| 另类小说一区二区三区| 91美女片黄在线观看91美女| 欧美一区二区三区喷汁尤物| 国产精品久久久久久久午夜片 | 国产福利91精品一区| 91免费观看在线| 精品国产乱码久久久久久影片| 亚洲日本在线天堂| 国产成人免费9x9x人网站视频| 在线看日本不卡| 欧美激情一区在线| 美女www一区二区| 在线视频你懂得一区二区三区| 欧美精品123区| 国产精品久久久久aaaa| 蜜桃视频在线观看一区二区| 欧美日韩视频不卡| 成人欧美一区二区三区1314| 国产一区中文字幕| 在线综合+亚洲+欧美中文字幕| 亚洲色图一区二区三区| 国产成人免费视频一区| 91精品国产综合久久蜜臀| 国产精品网站在线观看| 国产一区在线不卡| 91麻豆精品国产自产在线| 一区二区中文视频| 不卡的av电影| 国产精品久久久久久久久免费桃花| 青草国产精品久久久久久| 51午夜精品国产| 日韩精品一二区| 欧洲激情一区二区| 一区二区三区免费观看| 91美女精品福利| 亚洲精品欧美激情| 日本韩国一区二区| 一区2区3区在线看| 一本大道av一区二区在线播放| 国产精品国产a级| 91麻豆精品秘密| 亚洲精品国产a| 欧美婷婷六月丁香综合色| 一区二区三区在线视频观看58 | 成人激情开心网| 成人欧美一区二区三区白人| av成人老司机| 亚洲综合区在线| 777a∨成人精品桃花网| 久久精品国产亚洲一区二区三区| 欧美一区二区三区在线视频| 天堂午夜影视日韩欧美一区二区| 欧美无人高清视频在线观看| 日韩不卡免费视频| 欧美一区二区成人| 国产精品一区二区三区网站| 中日韩免费视频中文字幕| 99久久国产免费看| 婷婷成人激情在线网| 精品国产一区二区精华| 岛国一区二区在线观看| 亚洲色图丝袜美腿| 91精品国产一区二区三区| 蜜桃av一区二区在线观看| 久久久久国产精品厨房| eeuss国产一区二区三区| 一区二区不卡在线播放| 日韩午夜激情免费电影| 成人av先锋影音| 三级亚洲高清视频| 欧美国产亚洲另类动漫| 欧美日韩一级大片网址| 成人午夜碰碰视频| 三级在线观看一区二区| 中文字幕精品一区二区三区精品| 色播五月激情综合网| 久久成人av少妇免费| 一区在线播放视频| 精品欧美一区二区久久| 成人福利在线看| 蜜桃91丨九色丨蝌蚪91桃色| 成人欧美一区二区三区1314| 日韩三级中文字幕| 日本道精品一区二区三区| 久久精品国产99国产| 亚洲一区二区三区精品在线| 久久精品一区四区| 在线电影一区二区三区| 91丨九色丨尤物| 精品夜夜嗨av一区二区三区| 国产精品美女久久福利网站| 在线不卡一区二区| 粉嫩av亚洲一区二区图片| 亚洲色图清纯唯美| 国产精品久久久久久久浪潮网站| 精品日韩欧美一区二区| 欧美视频日韩视频| 成人性视频免费网站| 激情另类小说区图片区视频区| 亚洲一区二区三区四区五区黄| 国产欧美一二三区| 精品嫩草影院久久| 911精品产国品一二三产区| 色欲综合视频天天天| www.亚洲人| va亚洲va日韩不卡在线观看| 国产一本一道久久香蕉| 久久精品国产**网站演员| 日韩福利电影在线| 五月婷婷激情综合| 婷婷久久综合九色综合绿巨人| 亚洲午夜一区二区| 亚洲福利视频一区二区| 亚洲成人黄色小说| 免费成人性网站| 老鸭窝一区二区久久精品| 麻豆91免费观看|