日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代寫 CSCI1440/2440 Homework 3

時間:2024-02-16  來源:  作者: 我要糾錯


Homework 3: Myerson’s Lemma CSCI1440/2440

2024-02-08

Due Date: Tuesday, February 20, 2024. 11:59 PM.

We encourage you to work in groups of size two. Each group need only submit one solution. Your submission must be typeset using LATEX. Please submit via Gradescope with you and your partner’s Banner ID’s and which course you are taking.

For 1000-level credit, you need only solve the first three problems. For 2000-level credit, you should solve all four problems.

1 The All-Pay Auction

In an all-pay auction, the good is awarded to the highest bidder, but rather than only the winner paying, all bidders i must pay their bid: i.e., ui = vixi − pi.

Using the envelope theorem, derive (necessary conditions on) the symmetric equilibrium of a symmetric all-pay auction in which the bidders’ values are drawn i.i.d. from some bounded distribution F.

2 Allocation Rule Discontinuity

Fix a bidder i and a profile v−i. Myerson’s lemma tells us that incen-

tive compatibility and individual rationality imply two properties: 1. Allocation monotonicity: one’s allocation should not decrease as

 one’s value vi increases.

2. Myerson’s payment formula:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

xi(z,v−i)dz,

∀i ∈ [n],∀vi ∈ Ti,∀v−i ∈ T−i. (1)

In a second-price auction, the allocation rule is piecewise constant on any continuous interval. That is, bidder i’s allocation function is a Heaviside step function,1 with discontinuity at vi = b∗, where b∗ is the highest bid among all bidders other than i (i.e., b∗ = maxj̸=i vj):

1, if vi ≥ b∗ xi(vi,v−i) =

0, otherwise. Observe that ties are broken in favor of bidder i.

1 This is the canonical step function, whose range is [0, 1].

 

Given this allocation rule, the payment formula tells us what i should pay, should they be fortunate enough to win:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

?Z b∗

xi(z,v−i)dz

=vi(1)−

= vi(1)−(0+vi −b∗)

= b∗.

Alternatively, by integrating along the y-axis (i.e., R f (b) f −1 (y)dy),2

f (a)

bidder i’s payment can be expressed as follows: for ε ∈ (0, 1),

2 As the allocation function, call it f , is not invertible, but is weakly

increasing and right continuous, we define f(−1)(y) = inf{x | f(x) ≥ y}: e.g., f−1(1/2) = b∗.

Z vi ?dx (z,v )? pi(vi,v−i) = z i −i dz

Z ε Z 1−ε ?dxi(z,v−i)? = z(0)dz+ z

Z vi ? 0dz+ ∗ 1dz

0b

homework 3: myerson’s lemma 2

0 dz

0 ε dz 1−ε Z1−ε ∗

= bdy ε

∗ Z 1−ε =b dy ε

= b∗,

because the inverse of the allocation function is b∗, for all y ∈ (0, 1),

and limε→0 R 1−ε dy = 1. Intuitively, we can conclude the following ε

from this derivation: pi(vi, v−i) = b∗ · [jump in xi(·, v−i) at b∗]. Suppose that the allocation rule is piecewise constant on the con-

tinuous interval [0, vi], and discontinuous at points {z1, z2, . . . , zl} in this interval. That is, there are l points at which the allocation jumps from x(zj, v−i) to x(zj+1, v−i) (see Figure 1). Assuming this “jumpy” allocation rule is weakly increasing in value, prove that Myerson’s payment rule can be expressed as follows:

l

pi(vi, v−i) = ∑ zj · ?jump in xi(·, v−i) at zj? . (2) j=1

3 Sponsored Search Extension

In this problem, we generalize our model of sponsored search to include an additional quality parameter βi > 0 that characterizes each bidder i. With this additional parameter, we can view αj as the probability a user views an ad, and βi as the conditional probability that a user then clicks, given that they are already viewing the ad. Note that αj, the view probability, depends only on the slot j, not

Z 1

dz+ z(0)dz

 

xi(z3, v−i) xi(z2, v−i) xi(z1, v−i)

Figure 1: Allocation Rule. Shaded area represents payment.

z1z2 z3 Value, vi

on the advertiser occupying that slot, while βi, the conditional click probablity, explicitly depends on the advertiser i.

In this model, given bids v, bidder i’s utility is given by: ui(v) = βivix(v) − p(v)

So if bidder i is allocated slot j, their utility is: ui(v) = βiviαj − p(v)

Like click probabilities, you should assume qualities are public, not private, information.

1.

2.

4

optimization. The problem can be stated as follows:

There is a knapsack, which can hold a maximum weight of W ≥ 0. There are n items; each item i has weight wi ≤ W and value vi ≥ 0. The goal is to find a subset of items of maximal total value with total weight no more than W.

Written as an integer linear program,

n

max ∑ xivi

x i=1

Define total welfare for this model of sponsored search, and then describe an allocation rule that maximizes total welfare, given the bidders’ reports. Justify your answer.

Argue that your allocation rule is monotonic, and use Myerson’s characterization lemma to produce a payment rule that yields a DSIC mechanism for this sponsored search setting.

The Knapsack Auction

The knapsack problem is a famous NP-hard3 problem in combinatorial

3 There are no known polynomial-time solutions.

homework 3: myerson’s lemma 3

Allocation, xi(vi, v−i)

 

subject to

n

∑xiwi ≤W i=1

xi∈{0,1}, ∀i∈[n]

The key difference between optimization and mechanism design problems is that in mechanism design problems the constants (e.g., vi and wi) are not assumed to be known to the center / optimizer; on the contrary, they must be elicted, after which the optimization problem can then be solved as usual.

With this understanding in mind, we can frame the knapsack problem as a mechanism design problem as follows. Each bidder

has an item that they would like to put in the knapsack. Each item is characterized by two parameters—a public weight wi and a private value vi. An auction takes place, in which bidders report their values. The auctioneer then puts some of the items in the knapsack, and the bidders whose items are selected pay for this privilege. One real- world application of a knapsack auction is the selling of commercial snippets in a 5-minute ad break (e.g., during the Superbowl).4

Since the problem is NP-hard, we are unlikely to find a polynomial- time welfare-maximizing solution. Instead, we will produce a polynomial- time, DSIC mechanism that is a 2-approximation of the optimal wel-

fare. In particular, for any set possible set of values and weights, we

aim to always achieve at least 50% of the optimal welfare.

We propose the following greedy allocation scheme: Sort the bid- ders’ items in decreasing order by their ratios vi/wi, and then allocate items in that order until there is no room left in the knapsack.

1. Show that the greedy allocation scheme is not a 2-approximation by producing a counterexample where it fails to achieve 50% of the optimal welfare.

Alice proposes a small improvement to the greedy allocation scheme. Her improved allocation scheme compares the welfare achieved by the greedy allocation scheme to the welfare achieved

by simply putting the single item of highest value into the knapsack.5 She then uses whichever of the two approaches achieves greater wel- fare. It can be shown that this scheme yields a 2-approximation of optimal welfare. We will use it to create a mechanism that satisfies individual rationality and incentive compatibility.

2. Argue that Alice’s allocation scheme is monotone.

3. Now use Myerson’s payment formula to produce payments such that the resulting mechanism is DSIC and IR.

4 Here, the weight of a commercial is its time in seconds.

homework 3: myerson’s lemma 4

5 Note that weakly greater welfare could be achieved by greedily filling the knapsack with items in decreasing order of value until no more items

fit. We do not consider this scheme, because it is unnecessary to achieve

a 2-approximation; however, it is an obvious heuristic that anyone solving this problem in the real world
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫ACP Assignment 1 Specificaons
  • 下一篇:代做ECON 323 Econometric Analysis 2
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              国语自产精品视频在线看| 麻豆亚洲精品| 亚洲人成在线播放网站岛国| 欧美日韩国产小视频| 久久精品亚洲精品国产欧美kt∨| 91久久精品久久国产性色也91| 欧美日韩蜜桃| 欧美风情在线观看| 久久精品99国产精品日本 | 一区二区三区精品视频| 极品少妇一区二区| 国产精品午夜视频| 欧美视频国产精品| 欧美寡妇偷汉性猛交| 久久久久九九九| 欧美一区二区三区免费大片| 亚洲午夜日本在线观看| 91久久在线播放| 在线精品高清中文字幕| 国产一区二区日韩精品| 国产精品素人视频| 国产精品福利网| 欧美揉bbbbb揉bbbbb| 欧美日本高清一区| 欧美日本韩国一区二区三区| 欧美国产日韩一区二区在线观看| 久久九九久精品国产免费直播| 亚洲在线中文字幕| 亚洲性夜色噜噜噜7777| 制服丝袜亚洲播放| 亚洲一区国产| 亚洲欧美第一页| 性色av一区二区三区红粉影视| 亚洲男人的天堂在线aⅴ视频| 亚洲婷婷免费| 亚洲免费一级电影| 欧美在线观看视频| 久久久久九九九| 女人色偷偷aa久久天堂| 欧美福利视频一区| 欧美午夜精品久久久| 国产精品美女久久| 一区二区三区在线高清| 在线看国产一区| 亚洲欧洲日本mm| 一本高清dvd不卡在线观看| 99一区二区| 久久国产精品久久久久久久久久 | 国产精品久线观看视频| 国产美女搞久久| 在线观看不卡| 99爱精品视频| 久久国产精品第一页| 麻豆freexxxx性91精品| 欧美日韩亚洲国产精品| 国产欧美婷婷中文| 亚洲人午夜精品| 亚洲主播在线播放| 久久在精品线影院精品国产| 欧美日韩国产综合一区二区| 国产精品一二三四区| 在线观看欧美视频| 亚洲在线免费观看| 欧美国产一区二区| 国产中文一区二区| 亚洲网站啪啪| 欧美aⅴ99久久黑人专区| 国产精品99免费看| 亚洲国产精品www| 亚洲欧美日韩综合| 欧美精品日韩www.p站| 国产有码一区二区| 亚洲欧美成人在线| 欧美日韩国产成人高清视频| 国产亚洲欧美一级| 亚洲一区二区精品视频| 欧美激情第8页| 精品盗摄一区二区三区| 欧美在线免费一级片| 欧美日韩一区在线视频| 亚洲欧洲一区二区三区在线观看| 欧美中文字幕久久| 国产精品久久久久久久久久三级| 亚洲老司机av| 欧美www视频| 亚洲国产日韩欧美| 噜噜噜噜噜久久久久久91| 国产日韩欧美a| 亚洲男人的天堂在线观看| 欧美日韩一区二区三区四区五区 | 欧美日韩dvd在线观看| 亚洲国产mv| 美日韩精品视频| 一色屋精品视频在线观看网站| 西西裸体人体做爰大胆久久久| 欧美午夜精品久久久久久孕妇| 亚洲精品免费在线| 欧美伦理一区二区| 一区二区三区精品视频| 欧美日韩国产色综合一二三四 | 亚洲精品国偷自产在线99热| 久久久美女艺术照精彩视频福利播放| 国产日韩成人精品| 久久久久综合网| 亚洲国产高潮在线观看| 欧美国产精品| 99国内精品久久| 国产精品久久激情| 校园激情久久| 在线观看不卡| 欧美激情四色| 亚洲午夜精品| 国产视频精品网| 久久在线视频在线| 亚洲精品视频免费在线观看| 国产精品swag| 久久天天躁狠狠躁夜夜爽蜜月| 黄色国产精品| 欧美日产国产成人免费图片| 亚洲一区视频在线观看视频| 好吊色欧美一区二区三区视频| 蜜桃av综合| 亚洲直播在线一区| 国产网站欧美日韩免费精品在线观看| 久久婷婷国产综合精品青草| 99re6这里只有精品| 国产欧美一区二区色老头 | 亚洲电影自拍| 欧美性视频网站| 久久久精品一区| 一本一本久久a久久精品综合麻豆 一本一本久久a久久精品牛牛影视 | 国产精品美女久久| 麻豆精品一区二区综合av| 一区二区三区四区五区视频 | 国产欧美精品一区二区色综合| 久久久99免费视频| 中文日韩欧美| 亚洲第一搞黄网站| 国产精品爽爽爽| 欧美日韩成人在线播放| 欧美在线视频播放| 在线视频欧美一区| 亚洲激情女人| 一区在线观看视频| 国产乱码精品一区二区三| 欧美日韩大片一区二区三区| 久久午夜视频| 欧美专区在线播放| 亚洲欧美精品在线观看| 99精品热视频只有精品10| 在线日本成人| 黄色成人av| 国产日韩欧美亚洲| 国产精品成人免费| 欧美精品在线免费| 免费亚洲一区| 另类尿喷潮videofree| 午夜精品视频一区| 亚洲一区二区高清视频| 日韩午夜黄色| 亚洲乱码国产乱码精品精天堂| 亚洲国产第一| 在线电影一区| 在线观看国产精品网站| 激情久久综合| 亚洲国产精品www| 亚洲黄色成人| 亚洲激情六月丁香| 亚洲欧洲另类| 亚洲精选一区二区| 日韩亚洲精品在线| 夜夜嗨一区二区| 一区二区三区欧美视频| 国产精品国产三级国产专播精品人 | 久久一区二区三区四区五区| 久久久99免费视频| 美女亚洲精品| 欧美极品在线播放| 欧美日韩第一区日日骚| 欧美天堂亚洲电影院在线观看 | 99视频热这里只有精品免费| 亚洲三级免费| 亚洲一区二区在线免费观看视频 | 国产精品久久激情| 国产视频不卡| 亚洲国产精品一区二区www在线| 亚洲欧洲日韩在线| 亚洲综合日韩在线| 久久久人成影片一区二区三区观看| 老色批av在线精品| 欧美精品一区二区三区蜜桃| 欧美日韩午夜在线| 国产欧美一区二区精品秋霞影院| 国产主播喷水一区二区| 亚洲电影免费观看高清| 亚洲精品午夜| 久久国产精品99国产| 欧美黄色视屏| 国产在线精品二区| 99精品视频一区二区三区|