日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代寫 CSCI1440/2440 Homework 3

時間:2024-02-16  來源:  作者: 我要糾錯


Homework 3: Myerson’s Lemma CSCI1440/2440

2024-02-08

Due Date: Tuesday, February 20, 2024. 11:59 PM.

We encourage you to work in groups of size two. Each group need only submit one solution. Your submission must be typeset using LATEX. Please submit via Gradescope with you and your partner’s Banner ID’s and which course you are taking.

For 1000-level credit, you need only solve the first three problems. For 2000-level credit, you should solve all four problems.

1 The All-Pay Auction

In an all-pay auction, the good is awarded to the highest bidder, but rather than only the winner paying, all bidders i must pay their bid: i.e., ui = vixi − pi.

Using the envelope theorem, derive (necessary conditions on) the symmetric equilibrium of a symmetric all-pay auction in which the bidders’ values are drawn i.i.d. from some bounded distribution F.

2 Allocation Rule Discontinuity

Fix a bidder i and a profile v−i. Myerson’s lemma tells us that incen-

tive compatibility and individual rationality imply two properties: 1. Allocation monotonicity: one’s allocation should not decrease as

 one’s value vi increases.

2. Myerson’s payment formula:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

xi(z,v−i)dz,

∀i ∈ [n],∀vi ∈ Ti,∀v−i ∈ T−i. (1)

In a second-price auction, the allocation rule is piecewise constant on any continuous interval. That is, bidder i’s allocation function is a Heaviside step function,1 with discontinuity at vi = b∗, where b∗ is the highest bid among all bidders other than i (i.e., b∗ = maxj̸=i vj):

1, if vi ≥ b∗ xi(vi,v−i) =

0, otherwise. Observe that ties are broken in favor of bidder i.

1 This is the canonical step function, whose range is [0, 1].

 

Given this allocation rule, the payment formula tells us what i should pay, should they be fortunate enough to win:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

?Z b∗

xi(z,v−i)dz

=vi(1)−

= vi(1)−(0+vi −b∗)

= b∗.

Alternatively, by integrating along the y-axis (i.e., R f (b) f −1 (y)dy),2

f (a)

bidder i’s payment can be expressed as follows: for ε ∈ (0, 1),

2 As the allocation function, call it f , is not invertible, but is weakly

increasing and right continuous, we define f(−1)(y) = inf{x | f(x) ≥ y}: e.g., f−1(1/2) = b∗.

Z vi ?dx (z,v )? pi(vi,v−i) = z i −i dz

Z ε Z 1−ε ?dxi(z,v−i)? = z(0)dz+ z

Z vi ? 0dz+ ∗ 1dz

0b

homework 3: myerson’s lemma 2

0 dz

0 ε dz 1−ε Z1−ε ∗

= bdy ε

∗ Z 1−ε =b dy ε

= b∗,

because the inverse of the allocation function is b∗, for all y ∈ (0, 1),

and limε→0 R 1−ε dy = 1. Intuitively, we can conclude the following ε

from this derivation: pi(vi, v−i) = b∗ · [jump in xi(·, v−i) at b∗]. Suppose that the allocation rule is piecewise constant on the con-

tinuous interval [0, vi], and discontinuous at points {z1, z2, . . . , zl} in this interval. That is, there are l points at which the allocation jumps from x(zj, v−i) to x(zj+1, v−i) (see Figure 1). Assuming this “jumpy” allocation rule is weakly increasing in value, prove that Myerson’s payment rule can be expressed as follows:

l

pi(vi, v−i) = ∑ zj · ?jump in xi(·, v−i) at zj? . (2) j=1

3 Sponsored Search Extension

In this problem, we generalize our model of sponsored search to include an additional quality parameter βi > 0 that characterizes each bidder i. With this additional parameter, we can view αj as the probability a user views an ad, and βi as the conditional probability that a user then clicks, given that they are already viewing the ad. Note that αj, the view probability, depends only on the slot j, not

Z 1

dz+ z(0)dz

 

xi(z3, v−i) xi(z2, v−i) xi(z1, v−i)

Figure 1: Allocation Rule. Shaded area represents payment.

z1z2 z3 Value, vi

on the advertiser occupying that slot, while βi, the conditional click probablity, explicitly depends on the advertiser i.

In this model, given bids v, bidder i’s utility is given by: ui(v) = βivix(v) − p(v)

So if bidder i is allocated slot j, their utility is: ui(v) = βiviαj − p(v)

Like click probabilities, you should assume qualities are public, not private, information.

1.

2.

4

optimization. The problem can be stated as follows:

There is a knapsack, which can hold a maximum weight of W ≥ 0. There are n items; each item i has weight wi ≤ W and value vi ≥ 0. The goal is to find a subset of items of maximal total value with total weight no more than W.

Written as an integer linear program,

n

max ∑ xivi

x i=1

Define total welfare for this model of sponsored search, and then describe an allocation rule that maximizes total welfare, given the bidders’ reports. Justify your answer.

Argue that your allocation rule is monotonic, and use Myerson’s characterization lemma to produce a payment rule that yields a DSIC mechanism for this sponsored search setting.

The Knapsack Auction

The knapsack problem is a famous NP-hard3 problem in combinatorial

3 There are no known polynomial-time solutions.

homework 3: myerson’s lemma 3

Allocation, xi(vi, v−i)

 

subject to

n

∑xiwi ≤W i=1

xi∈{0,1}, ∀i∈[n]

The key difference between optimization and mechanism design problems is that in mechanism design problems the constants (e.g., vi and wi) are not assumed to be known to the center / optimizer; on the contrary, they must be elicted, after which the optimization problem can then be solved as usual.

With this understanding in mind, we can frame the knapsack problem as a mechanism design problem as follows. Each bidder

has an item that they would like to put in the knapsack. Each item is characterized by two parameters—a public weight wi and a private value vi. An auction takes place, in which bidders report their values. The auctioneer then puts some of the items in the knapsack, and the bidders whose items are selected pay for this privilege. One real- world application of a knapsack auction is the selling of commercial snippets in a 5-minute ad break (e.g., during the Superbowl).4

Since the problem is NP-hard, we are unlikely to find a polynomial- time welfare-maximizing solution. Instead, we will produce a polynomial- time, DSIC mechanism that is a 2-approximation of the optimal wel-

fare. In particular, for any set possible set of values and weights, we

aim to always achieve at least 50% of the optimal welfare.

We propose the following greedy allocation scheme: Sort the bid- ders’ items in decreasing order by their ratios vi/wi, and then allocate items in that order until there is no room left in the knapsack.

1. Show that the greedy allocation scheme is not a 2-approximation by producing a counterexample where it fails to achieve 50% of the optimal welfare.

Alice proposes a small improvement to the greedy allocation scheme. Her improved allocation scheme compares the welfare achieved by the greedy allocation scheme to the welfare achieved

by simply putting the single item of highest value into the knapsack.5 She then uses whichever of the two approaches achieves greater wel- fare. It can be shown that this scheme yields a 2-approximation of optimal welfare. We will use it to create a mechanism that satisfies individual rationality and incentive compatibility.

2. Argue that Alice’s allocation scheme is monotone.

3. Now use Myerson’s payment formula to produce payments such that the resulting mechanism is DSIC and IR.

4 Here, the weight of a commercial is its time in seconds.

homework 3: myerson’s lemma 4

5 Note that weakly greater welfare could be achieved by greedily filling the knapsack with items in decreasing order of value until no more items

fit. We do not consider this scheme, because it is unnecessary to achieve

a 2-approximation; however, it is an obvious heuristic that anyone solving this problem in the real world
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫ACP Assignment 1 Specificaons
  • 下一篇:代做ECON 323 Econometric Analysis 2
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        色诱亚洲精品久久久久久| 懂色av一区二区三区免费观看| 亚洲sss视频在线视频| 国产一级精品在线| 久久久亚洲欧洲日产国码αv| 日韩av电影免费观看高清完整版 | 久久久综合精品| 久久久久亚洲蜜桃| 国产麻豆精品视频| 国产精品久久久久久久久久免费看 | 成人午夜激情视频| 亚洲国产成人自拍| 色综合欧美在线| 午夜久久久影院| 欧美刺激脚交jootjob| 国产精品 欧美精品| 中文字幕亚洲欧美在线不卡| 91丨九色丨黑人外教| 中文字幕免费不卡在线| aaa亚洲精品一二三区| 伊人夜夜躁av伊人久久| 在线电影国产精品| 黑人巨大精品欧美一区| 中文字幕欧美日本乱码一线二线 | 欧美成人video| 国产亚洲精品中文字幕| 福利电影一区二区三区| 日韩毛片一二三区| 91精品国产麻豆国产自产在线 | 国产精品美女一区二区| 91影院在线观看| 日韩精品欧美精品| 国产欧美在线观看一区| 91福利精品视频| 性感美女极品91精品| 精品粉嫩超白一线天av| 日本伦理一区二区| 欧美色网站导航| 成人欧美一区二区三区小说| 这里是久久伊人| 91精彩视频在线| 99久久精品国产一区二区三区| 极品少妇xxxx精品少妇| 偷拍一区二区三区四区| 亚洲一区二区三区四区在线观看| 中文字幕免费观看一区| 久久综合久久综合久久| 91精品在线一区二区| 欧美电影一区二区三区| 欧美日韩美女一区二区| 成人高清免费在线播放| 国产在线观看免费一区| 免费看精品久久片| 久久国产尿小便嘘嘘尿| 亚洲不卡av一区二区三区| 天堂影院一区二区| 日韩极品在线观看| 捆绑变态av一区二区三区| 久久精品99国产精品日本| 国产午夜亚洲精品不卡| 高清成人在线观看| 国产精品一线二线三线精华| 国产又粗又猛又爽又黄91精品| 极品销魂美女一区二区三区| 国产中文字幕一区| 懂色av一区二区在线播放| 99视频精品在线| 欧美在线你懂得| 欧美巨大另类极品videosbest | 蜜乳av一区二区| 日韩欧美一级二级三级久久久| 免费观看一级特黄欧美大片| av在线不卡网| 波多野结衣中文字幕一区| 精品国免费一区二区三区| 91 com成人网| 成人av电影在线播放| 极品少妇一区二区三区精品视频| 日本在线观看不卡视频| 色呦呦日韩精品| 欧美日韩情趣电影| 美女高潮久久久| 成人性生交大片免费看中文 | 国产精品视频yy9299一区| 亚洲欧洲精品一区二区精品久久久 | 欧美日韩亚洲丝袜制服| 欧美成人性战久久| 中文字幕一区二区日韩精品绯色| 日韩精品一区第一页| 亚洲6080在线| 国产精品理伦片| 亚洲成人动漫精品| 狠狠色丁香久久婷婷综| 99re成人精品视频| 欧美videos大乳护士334| 亚洲精品大片www| 秋霞电影网一区二区| 成人网男人的天堂| 日韩欧美精品三级| 亚洲国产中文字幕在线视频综合| 久久99热这里只有精品| 91丨porny丨户外露出| 精品久久久久久久一区二区蜜臀| 亚洲精品成人在线| av午夜精品一区二区三区| 欧美一区二区三区色| 一级日本不卡的影视| 不卡一区二区在线| 国产亚洲一区二区在线观看| 调教+趴+乳夹+国产+精品| 91在线观看高清| 国产精品国产三级国产| 成人免费视频视频在线观看免费| 91精选在线观看| 视频一区欧美日韩| 欧美精选一区二区| 亚洲二区视频在线| 天堂在线一区二区| 成人av网在线| 久久久久久久久一| 日本一区中文字幕 | 亚洲v精品v日韩v欧美v专区| 99国产精品久久久久久久久久久| 久久欧美一区二区| 国产麻豆91精品| 国产亚洲精品aa| 国产成人精品午夜视频免费| 国产情人综合久久777777| 男女男精品视频网| 日韩精品一区二| 国产美女在线观看一区| 中文字幕av一区 二区| 91免费在线视频观看| 亚洲综合小说图片| 欧美高清激情brazzers| 日韩精品一级中文字幕精品视频免费观看 | 国产精品美女久久久久久久| 成人国产精品视频| 一区二区三区在线免费播放| 欧美日本乱大交xxxxx| 久久国产精品第一页| 国产拍揄自揄精品视频麻豆| 99国产精品国产精品久久| 亚洲国产精品久久不卡毛片 | 蜜臀av一级做a爰片久久| 91精品国产一区二区| 经典三级视频一区| 日韩一区日韩二区| 3d动漫精品啪啪| 国产成人精品影视| 樱桃视频在线观看一区| 欧美喷水一区二区| 国产成人免费视频| 天堂影院一区二区| 中文欧美字幕免费| 91麻豆精品国产91久久久更新时间 | 亚洲欧洲另类国产综合| www.日韩精品| 五月激情综合色| 久久久久久久久伊人| 色综合久久久久| 日韩av电影免费观看高清完整版在线观看| 日韩欧美精品在线视频| 成人激情视频网站| 免费观看一级欧美片| 国产精品福利av| 欧美岛国在线观看| 欧美亚洲另类激情小说| 国产美女视频一区| 日韩1区2区3区| 一区二区三区在线影院| 久久久精品天堂| 日韩欧美区一区二| 色哦色哦哦色天天综合| 国产精品亚洲专一区二区三区| 亚洲成人免费在线| 亚洲bdsm女犯bdsm网站| 欧美三级日本三级少妇99| 久草中文综合在线| 亚洲一区二区三区三| 国产精品久久久久一区| 欧美电影一区二区| 色8久久人人97超碰香蕉987| 国产福利91精品| 国产精品一区二区三区99| 日本欧美大码aⅴ在线播放| 一区二区在线电影| 亚洲欧美偷拍卡通变态| 国产片一区二区| 26uuu成人网一区二区三区| 欧美午夜精品久久久| 91在线一区二区| 国产成人av一区二区| 国产精品一区专区| 国产激情一区二区三区四区| 捆绑调教一区二区三区| 男男视频亚洲欧美| 另类专区欧美蜜桃臀第一页| 无吗不卡中文字幕| 日韩黄色小视频|