代做3 D printer materials estimation編程

            時間:2024-02-21  來源:  作者: 我要糾錯



            Project 1: 3D printer materials estimation
            Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
            definitions on the code.R file and write your report using report.Rmd. You must upload the following three
            files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
            in the README.md file.
            The main text in your report should be a coherent presentation of theory and discussion of methods and
            results, showing code for code chunks that perform computations and analysis but not code for code chunks
            that generate functions, figures, or tables.
            Use the echo=TRUE and echo=FALSE to control what code is visible.
            The styler package addin is useful for restyling code for better and consistent readability. It works for both
            .R and .Rmd files.
            The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
            attached in Learn as PDF files.
            Submission should be done through Gradescope.
            1 The data
            A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
            objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
            much material will be required to print the object.
            The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
            • Index: an observation index
            • Date: printing dates
            • Material: the printing material, identified by its colour
            • CAD_Weight: the object weight (in grams) that the CAD software calculated
            • Actual_Weight: the actual weight of the object (in grams) after printing
            Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
            and Material.
            2 Classical estimation
            Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
            Actual_Weight. We denote the CAD_weight for observation i by xi
            , and the corresponding Actual_Weight
            by yi
            . The two models are defined by
            • Model A: yi ∼ Normal[β1 + β2xi
            , exp(β3 + β4xi)]
            • Model B: yi ∼ Normal[β1 + β2xi
            , exp(β3) + exp(β4)x
            2
            i
            )]
            The printer operator reasons that random fluctuations in the material properties (such as the density) and
            room temperature should lead to a relative error instead of an additive error, leading them to model B as an
            approximation of that. The basic physics assumption is that the error in the CAD software calculation of
            the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
            convenient, but has no such motivation in physics.
            1
            Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
            containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
            specified model.
            Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
            to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
            optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
            function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
            and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
            best set of parameters found and the estimate of the Hessian at the solution found.
            First, use filament1_estimate() to estimate models A and B using the filament1 data:
            • fit_A = filament1_estimate(filament1, “A”)
            • fit_B = filament1_estimate(filament1, “B”)
            Use the approximation method for large n and the outputs from filament1_estimate() to construct an
            approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
            using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
            Comment on the differences to interpret the model estimation results.
            3 Bayesian estimation
            Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
            observation i:
            yi ∼ Normal[β1 + β2xi
            , β3 + β4x
            2
            i
            )].
            To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
            introduced, and the printer operator assigns independent prior distributions as follows:
            θ1 ∼ Normal(0, γ1),
            θ2 ∼ Normal(1, γ2),
            θ3 ∼ LogExp(γ3),
            θ4 ∼ LogExp(γ4),
            where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
            a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
            3.1 Prior density
            With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
            document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
            θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
            of the joint prior density p(θ) for the four θi parameters.
            3.2 Observation likelihood
            With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
            evaluates the observation log-likelihood p(y|θ) for the model defined above.
            3.3 Posterior density
            Define and document a function log_posterior_density with arguments theta, x, y, and params, which
            evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
            2
            3.4 Posterior mode
            Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
            with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
            evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
            return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
            the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
            to do maximisation instead of minimisation.
            3.5 Gaussian approximation
            Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
            mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
            θ. Use start values θ = 0.
            3.6 Importance sampling function
            The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
            the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
            was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
            distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
            densities.
            Define and document a function do_importance taking arguments N (the number of samples to generate),
            mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
            parameters that are needed by the function code.
            The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
            containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
            the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
            information.
            3.7 Importance sampling
            Use your defined functions to compute an importance sample of size N = 10000. With the help of
            the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
            pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
            Construct 90% credible intervals for each of the four model parameters based on the importance sample.
            In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
            wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
            probability), generating a 1-row, 2-column data.frame to help structure the code.
            Discuss the results both from the sampling method point of view and the 3D printer application point of
            view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
            and plotting the importance log-weights to explain how they depend on the sampled β-values).
            請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

            標簽:

            掃一掃在手機打開當前頁
          1. 上一篇:代寫game of Bingo cards
          2. 下一篇:代寫PLAN60722 – Urban Design Project
          3. 無相關信息
            昆明生活資訊

            昆明圖文信息
            蝴蝶泉(4A)-大理旅游
            蝴蝶泉(4A)-大理旅游
            油炸竹蟲
            油炸竹蟲
            酸筍煮魚(雞)
            酸筍煮魚(雞)
            竹筒飯
            竹筒飯
            香茅草烤魚
            香茅草烤魚
            檸檬烤魚
            檸檬烤魚
            昆明西山國家級風景名勝區
            昆明西山國家級風景名勝區
            昆明旅游索道攻略
            昆明旅游索道攻略
          4. 高仿包包訂製 幣安官網下載

            關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

            Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
            ICP備06013414號-3 公安備 42010502001045

            主站蜘蛛池模板: 精品人妻少妇一区二区| 久久er99热精品一区二区| 亚洲AV无一区二区三区久久| 在线精品一区二区三区| 中文字幕VA一区二区三区 | 国产精品日韩一区二区三区| 久久99精品国产一区二区三区| 无码人妻AⅤ一区二区三区水密桃 无码欧精品亚洲日韩一区夜夜嗨 无码毛片一区二区三区中文字幕 无码毛片一区二区三区视频免费播放 | 精品综合一区二区三区| 无码av免费一区二区三区| 亚洲一区日韩高清中文字幕亚洲| 老熟妇高潮一区二区三区| 中文字幕av一区| 亚洲一区免费在线观看| 日韩好片一区二区在线看| 一区二区视频传媒有限公司| 国产精品男男视频一区二区三区| 亚洲AⅤ视频一区二区三区| 人妻在线无码一区二区三区| 免费无码A片一区二三区| 日韩福利视频一区| 无码精品人妻一区二区三区影院 | 无码人妻aⅴ一区二区三区| 国产精品合集一区二区三区| 亚洲午夜电影一区二区三区 | 在线观看一区二区三区视频 | 人妻AV一区二区三区精品 | 日韩AV在线不卡一区二区三区 | 在线精品国产一区二区| 亚洲天堂一区二区三区| 免费无码A片一区二三区| 国产精品一区二区综合| 久久国产三级无码一区二区| 国产亚洲自拍一区| 国产福利一区二区三区在线观看| 人妻精品无码一区二区三区| 亚洲欧洲一区二区三区| 亚洲狠狠久久综合一区77777| 91精品国产一区| 国产日韩精品一区二区在线观看播放 | 一区 二区 三区 中文字幕|