日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代做3 D printer materials estimation編程

時間:2024-02-21  來源:  作者: 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct 90% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a 1-row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫game of Bingo cards
  • 下一篇:代寫PLAN60722 – Urban Design Project
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        蜜臀av亚洲一区中文字幕| 亚洲成a人v欧美综合天堂下载 | 午夜欧美大尺度福利影院在线看| 91亚洲精华国产精华精华液| 国产精品麻豆久久久| 在线观看国产一区二区| 日日欢夜夜爽一区| 国产亚洲综合av| 在线视频欧美区| 久久国内精品自在自线400部| 国产三级欧美三级日产三级99| 99久久久无码国产精品| 日韩一区精品视频| 欧美国产成人精品| 欧美日韩不卡一区二区| 国模无码大尺度一区二区三区| 亚洲欧美综合在线精品| 7777精品伊人久久久大香线蕉超级流畅 | 欧美精品乱码久久久久久按摩| 狠狠色丁香婷综合久久| 综合亚洲深深色噜噜狠狠网站| 欧美人xxxx| 国产91丝袜在线播放0| 亚洲www啪成人一区二区麻豆| 久久综合九色综合久久久精品综合 | 日本三级亚洲精品| 综合久久久久久久| wwwwww.欧美系列| 欧美三级电影精品| 不卡的av电影| 国产精品一二三四| 看片网站欧美日韩| 五月激情六月综合| 亚洲老司机在线| 国产日韩欧美一区二区三区综合| 欧美高清性hdvideosex| 日本道精品一区二区三区| 国产精品亚洲专一区二区三区| 天天影视色香欲综合网老头| 亚洲色大成网站www久久九九| 久久久亚洲欧洲日产国码αv| 欧美一区三区四区| 欧美日韩高清一区| 欧美亚洲高清一区| 色8久久人人97超碰香蕉987| 成人免费电影视频| 国产iv一区二区三区| 国产精品一区二区果冻传媒| 国产精品一区二区果冻传媒| 国产精品一区二区三区四区| 国产精品一区二区91| 国产高清精品在线| 福利一区二区在线观看| 国产高清成人在线| 成人美女视频在线观看18| 国产成人一区在线| 粉嫩蜜臀av国产精品网站| 粗大黑人巨茎大战欧美成人| 丁香婷婷深情五月亚洲| caoporn国产精品| voyeur盗摄精品| 91福利在线播放| 欧美浪妇xxxx高跟鞋交| 日韩欧美高清一区| 国产片一区二区三区| 亚洲欧美另类在线| 婷婷夜色潮精品综合在线| 蜜臀av性久久久久蜜臀av麻豆 | 91精品久久久久久蜜臀| 欧美人牲a欧美精品| 日韩视频免费观看高清完整版| 欧美一区二区三区视频在线观看| 欧美本精品男人aⅴ天堂| 国产性天天综合网| 亚洲欧洲精品一区二区三区| 亚洲一区二区三区国产| 麻豆精品在线播放| 成人午夜av影视| 欧美日本精品一区二区三区| 日韩欧美视频在线| 欧美国产成人在线| 午夜视频一区二区三区| 精品一区中文字幕| 色88888久久久久久影院按摩| 欧美一级日韩免费不卡| 国产欧美日韩不卡| 日韩在线观看一区二区| 成人一区二区在线观看| 欧美日韩在线观看一区二区| 日韩精品一区二区三区在线| 国产精品久久久久四虎| 日韩黄色在线观看| 99国产精品久| 精品日韩一区二区三区免费视频| 亚洲欧洲制服丝袜| 精品一区二区三区久久| 91久久一区二区| 日本一区免费视频| 奇米色一区二区| 日本道免费精品一区二区三区| 久久精品在这里| 日韩精品成人一区二区三区| 成人一级视频在线观看| 亚洲精品一区二区三区香蕉| 亚洲成av人片在线观看| 91视频在线观看| 国产精品久久久99| 精品在线观看免费| 91精选在线观看| 亚洲国产毛片aaaaa无费看| 成人app在线| 久久欧美一区二区| 免费日本视频一区| 69久久夜色精品国产69蝌蚪网| 亚洲精品老司机| 91片在线免费观看| 最新国产成人在线观看| 国产美女在线精品| 日韩精品一区二区三区在线播放 | 懂色av一区二区夜夜嗨| 日韩免费视频一区二区| 秋霞成人午夜伦在线观看| 欧美视频完全免费看| 亚洲午夜一区二区| 欧美在线视频不卡| 中日韩av电影| 国产成人精品亚洲777人妖| 精品久久久久久久人人人人传媒| 蜜臀久久久久久久| 日韩色视频在线观看| 另类欧美日韩国产在线| 欧美精品一区二区在线播放| 国产麻豆一精品一av一免费| 国产喷白浆一区二区三区| 国产98色在线|日韩| 亚洲免费成人av| 欧美视频中文一区二区三区在线观看| 一区二区三区日韩精品视频| 在线观看91视频| 日本大胆欧美人术艺术动态| 日韩午夜av电影| 国产风韵犹存在线视精品| 国产精品久久久久久久久果冻传媒 | 国产91清纯白嫩初高中在线观看| 国产精品色哟哟网站| 91黄色在线观看| 日本欧美大码aⅴ在线播放| 久久久影院官网| 91国产免费看| 激情久久五月天| 亚洲图片另类小说| 欧美一区二区私人影院日本| 国产电影精品久久禁18| 亚洲精品水蜜桃| 欧美va亚洲va香蕉在线| 99久久伊人精品| 蜜臀av一区二区| 亚洲免费观看在线观看| 精品国产乱码91久久久久久网站| www.色精品| 精品无码三级在线观看视频| 一区二区三区四区高清精品免费观看| 欧美一区永久视频免费观看| 97国产一区二区| 精品影视av免费| 亚洲精品菠萝久久久久久久| 精品国产亚洲一区二区三区在线观看| 色悠悠亚洲一区二区| 国产综合色视频| 三级成人在线视频| 亚洲欧美一区二区久久| 久久免费看少妇高潮| 欧美日韩免费高清一区色橹橹| 国产一区二区在线免费观看| 久草中文综合在线| 亚洲国产人成综合网站| 国产精品久久久久一区| 久久久久久免费毛片精品| 欧美日韩三级一区| 色综合久久久久久久久久久| 黑人精品欧美一区二区蜜桃| 亚洲国产欧美日韩另类综合 | 亚洲va欧美va人人爽午夜| 国产亚洲精品久| 精品久久国产97色综合| 5858s免费视频成人| 欧美性猛交xxxx乱大交退制版| 国产.欧美.日韩| 丁香婷婷综合激情五月色| 国产91在线看| 成人精品亚洲人成在线| 国产一区二区在线观看视频| 青青草原综合久久大伊人精品优势 | 久久久久久夜精品精品免费| 日韩欧美中文字幕制服| 5566中文字幕一区二区电影| 欧美日韩国产一级片| 欧美中文字幕一区| 欧美亚洲国产一区在线观看网站| 在线观看日产精品|