日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代做3 D printer materials estimation編程

時間:2024-02-21  來源:  作者: 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct 90% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a 1-row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫game of Bingo cards
  • 下一篇:代寫PLAN60722 – Urban Design Project
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        日韩三区在线观看| 久久不见久久见中文字幕免费| 日本一区免费视频| 免费成人在线播放| 精品视频一区二区不卡| 国产精品国产三级国产有无不卡| 国产成人av一区二区| 日韩一级二级三级精品视频| 日韩av电影一区| 在线观看欧美日本| 五月激情六月综合| 337p粉嫩大胆噜噜噜噜噜91av | 精品福利二区三区| 蜜臀精品一区二区三区在线观看| 在线不卡中文字幕播放| 不卡视频一二三四| 午夜视频在线观看一区| 久久综合99re88久久爱| 丁香桃色午夜亚洲一区二区三区| 亚洲精品乱码久久久久久| 色88888久久久久久影院按摩| 1024国产精品| 亚洲精品一区二区三区福利| 成人免费福利片| 日日摸夜夜添夜夜添精品视频| 精品久久久久久久一区二区蜜臀| 色综合久久久网| 久久精品国产久精国产| 国产精品久久久久影院色老大| 欧美日韩小视频| 国产成人在线视频网址| 视频精品一区二区| 国产精品卡一卡二| 久久久亚洲欧洲日产国码αv| 成人av动漫在线| 亚洲大片免费看| 亚洲激情在线播放| 精品国产污网站| 日韩一区二区在线免费观看| 不卡av免费在线观看| 国产精品一区二区免费不卡 | 久久午夜羞羞影院免费观看| 欧美四级电影在线观看| 亚洲三级电影全部在线观看高清| 欧美日韩一卡二卡三卡 | 国产在线视视频有精品| 欧美猛男超大videosgay| 色婷婷综合激情| 国产精品88av| 风间由美一区二区三区在线观看 | 国产精品久久久久久亚洲毛片| 日韩欧美一区二区久久婷婷| 在线视频欧美区| 欧美在线视频日韩| 成人在线一区二区三区| 亚洲欧美在线aaa| 精品电影一区二区| 久久久久久亚洲综合影院红桃| 正在播放亚洲一区| 日韩片之四级片| 91精品在线观看入口| 日韩视频免费观看高清完整版 | 精品综合久久久久久8888| 国产精品不卡在线观看| 亚洲欧洲性图库| 久久久久9999亚洲精品| 欧美国产丝袜视频| 久久亚洲捆绑美女| www亚洲一区| 亚洲图片另类小说| 国产精品乱人伦一区二区| 一区二区三区四区不卡视频| 亚洲欧美欧美一区二区三区| 亚洲国产另类精品专区| 亚洲成av人片| 国产精品乱码久久久久久| 一区2区3区在线看| 亚洲va中文字幕| 国内久久婷婷综合| 国产99久久精品| 欧美日韩国产综合久久| 69堂精品视频| 国产精品久久久久久久久免费相片| 国产精品情趣视频| 三级一区在线视频先锋 | 97久久精品人人澡人人爽| 99久久精品国产导航| 色欧美乱欧美15图片| 欧美日韩精品免费| 成人午夜又粗又硬又大| av亚洲产国偷v产偷v自拍| 色综合久久中文综合久久牛| 精品国产一二三| 中文字幕一区日韩精品欧美| 奇米色777欧美一区二区| 国精产品一区一区三区mba视频| 在线观看免费成人| 欧美岛国在线观看| 亚洲午夜久久久| 久久99国产精品免费| 亚洲最大的成人av| 成人免费视频视频| 精品1区2区3区| 亚洲精品高清视频在线观看| 亚洲色图19p| 成人理论电影网| 欧美精品tushy高清| 一区二区三区在线视频免费观看| 日日夜夜精品免费视频| 色乱码一区二区三区88| 欧美电影免费观看高清完整版在| 精品成人一区二区三区四区| 一区二区三区中文免费| 视频在线在亚洲| 欧美亚洲国产一卡| 日本一区二区三区四区| 国产精品系列在线播放| 欧美精品免费视频| 婷婷夜色潮精品综合在线| 成人va在线观看| 国产欧美视频在线观看| 日本美女一区二区三区视频| 欧美日韩1234| 亚洲自拍与偷拍| 欧洲国产伦久久久久久久| 国产精品丝袜在线| 69堂精品视频| 午夜精品一区二区三区免费视频 | 欧美国产日韩精品免费观看| 亚洲va国产天堂va久久en| 欧美日韩国产高清一区二区| 国产精品美女久久久久久| 国产99久久久精品| 精品国产成人系列| 亚洲美女免费视频| 欧美日韩一区 二区 三区 久久精品| 成人欧美一区二区三区黑人麻豆 | 一区二区三区不卡在线观看| 在线观看日韩av先锋影音电影院| 国产人伦精品一区二区| 亚洲成人黄色小说| 欧美一区二区观看视频| 亚洲摸摸操操av| 欧美精品三级在线观看| 亚洲成a人在线观看| 久久综合色播五月| 国产一区二区三区在线观看精品| 国产日韩欧美精品综合| 国产一区二区三区综合| 亚洲摸摸操操av| 欧美三级欧美一级| 狠狠狠色丁香婷婷综合激情 | 久久aⅴ国产欧美74aaa| 久久久国产一区二区三区四区小说| 日韩av在线发布| 国产色一区二区| av午夜一区麻豆| 丝袜亚洲另类欧美| 日韩精品一区二区三区老鸭窝| 粉嫩高潮美女一区二区三区| 亚洲欧美在线观看| 国产精品香蕉一区二区三区| 一区二区三区免费在线观看| 欧美蜜桃一区二区三区| caoporen国产精品视频| 亚洲欧美日韩国产另类专区| 精品久久久久久亚洲综合网 | 久久久久成人黄色影片| 91视频观看免费| 亚洲国产精品精华液网站| 日韩一二在线观看| 成人一区二区三区视频| 亚洲视频每日更新| 欧美日韩在线播放三区| 国产美女精品人人做人人爽 | 国产精品久久久久久久久快鸭| 91在线视频网址| 天天色综合天天| 国产午夜精品福利| 欧美日韩一区三区| av亚洲精华国产精华精华| 日韩精品高清不卡| 一区二区在线免费观看| 欧美一二三区在线| 欧美精品自拍偷拍动漫精品| 国模无码大尺度一区二区三区| 天天做天天摸天天爽国产一区| 国产欧美精品日韩区二区麻豆天美| 欧美精品乱人伦久久久久久| 风流少妇一区二区| 国产一二三精品| 麻豆久久久久久| 亚洲一区中文在线| 国产精品久久久久久久久快鸭| 精品1区2区在线观看| 欧美最新大片在线看| 在线免费观看成人短视频| 粉嫩久久99精品久久久久久夜| 国产做a爰片久久毛片| 日本va欧美va欧美va精品|