日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代做3 D printer materials estimation編程

時間:2024-02-21  來源:  作者: 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct 90% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a 1-row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標(biāo)簽:

掃一掃在手機打開當(dāng)前頁
  • 上一篇:代寫game of Bingo cards
  • 下一篇:代寫PLAN60722 – Urban Design Project
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        欧美无乱码久久久免费午夜一区| 亚洲美女屁股眼交3| 欧美丝袜第三区| 97久久精品人人做人人爽50路| 亚洲人妖av一区二区| 国产三级一区二区三区| 久久伊人中文字幕| 欧美不卡一区二区三区四区| 日韩一区二区免费在线观看| 日韩一区二区三区高清免费看看| 欧美影院午夜播放| 91精品国产入口在线| 91精品国产综合久久精品| 日韩一级片在线观看| 日韩一区二区三区在线视频| 日韩视频在线永久播放| 精品国产一区二区三区忘忧草 | 在线播放视频一区| 欧美一区二区美女| 精品国产凹凸成av人导航| 欧美一区三区四区| 久久综合av免费| 亚洲色图在线看| 午夜精品一区二区三区免费视频| 亚洲妇女屁股眼交7| 免费观看在线综合| 丁香婷婷综合色啪| 日韩精品在线看片z| 久久久久久电影| 一区二区三区小说| 美女视频一区二区三区| 粉嫩aⅴ一区二区三区四区 | 欧美色图天堂网| 欧美一级高清大全免费观看| 久久久久97国产精华液好用吗| 国产精品久久久一本精品| 亚洲午夜一区二区| 国产真实精品久久二三区| 99国产欧美另类久久久精品| 欧美精品tushy高清| 国产女人aaa级久久久级| 五月婷婷综合在线| 成人午夜在线播放| 欧美一区二区大片| 中文字幕在线观看一区二区| 美女视频黄a大片欧美| 97精品久久久久中文字幕| 欧美一区二区三区系列电影| 亚洲天堂免费在线观看视频| av在线一区二区| 69av一区二区三区| 亚洲久草在线视频| 国产成人小视频| 日韩女优av电影在线观看| 亚洲天堂a在线| 国产成人精品午夜视频免费| 91精品国产91综合久久蜜臀| 亚洲另类色综合网站| 成人免费高清视频| 久久综合九色综合97婷婷| 日韩av一级片| 欧美日韩日日骚| 一区二区三区四区精品在线视频| 国产揄拍国内精品对白| 6080午夜不卡| 日韩黄色在线观看| 精品视频色一区| 一区二区高清免费观看影视大全| 国产精品乡下勾搭老头1| 日韩欧美亚洲一区二区| 亚洲不卡一区二区三区| 欧美日韩国产精选| 亚洲综合网站在线观看| 色视频成人在线观看免| 亚洲人成精品久久久久| 99久久综合99久久综合网站| 亚洲欧洲一区二区在线播放| jlzzjlzz亚洲日本少妇| 亚洲色图欧洲色图| 一本在线高清不卡dvd| ㊣最新国产の精品bt伙计久久| 高清视频一区二区| 国产精品国产三级国产三级人妇| 国产久卡久卡久卡久卡视频精品| 欧美第一区第二区| 国产福利一区二区三区视频在线| 欧美一区二区观看视频| 精品一区二区三区在线观看| 精品噜噜噜噜久久久久久久久试看| 首页国产丝袜综合| 精品久久久久久亚洲综合网| 国产精品66部| 亚洲人妖av一区二区| 欧美影院午夜播放| 久久超碰97中文字幕| 欧美国产综合一区二区| 日本高清不卡aⅴ免费网站| 亚洲国产视频一区| 日韩午夜三级在线| 成人精品视频一区二区三区| 国产精品白丝在线| 在线成人免费观看| 懂色av中文一区二区三区| 亚洲国产欧美日韩另类综合| 日韩一区二区三区观看| 成人午夜碰碰视频| 日本成人在线电影网| 国产亚洲午夜高清国产拍精品 | 99久久精品免费精品国产| 午夜成人在线视频| 亚洲国产高清不卡| 制服丝袜激情欧洲亚洲| 国产99精品在线观看| 亚洲高清久久久| 国产精品网站导航| 91精品国产91久久综合桃花| 风流少妇一区二区| 男人的天堂亚洲一区| 亚洲精品日韩专区silk| 久久综合国产精品| 欧美日韩成人综合天天影院| av网站一区二区三区| 久久91精品久久久久久秒播| 一二三四社区欧美黄| 中文字幕 久热精品 视频在线| 欧美午夜寂寞影院| 成人激情免费电影网址| 久久99国产精品成人| 日日夜夜精品视频天天综合网| 精品久久久久久最新网址| 欧美午夜精品久久久久久超碰 | 久久精品亚洲精品国产欧美kt∨| 成人v精品蜜桃久久一区| 免费高清视频精品| 五月婷婷色综合| 亚洲精品久久7777| 最新久久zyz资源站| 久久久久久久久久久久久久久99 | 欧美影院一区二区| 99精品黄色片免费大全| 成人深夜视频在线观看| 国产在线一区观看| 美女脱光内衣内裤视频久久影院| 中文字幕一区二区5566日韩| 欧美国产激情一区二区三区蜜月| 欧美羞羞免费网站| 在线精品视频免费观看| 国产成人在线免费| 成人精品一区二区三区中文字幕| 精品一区二区三区在线观看 | 一区二区三区久久久| 亚洲免费资源在线播放| 亚洲天堂精品在线观看| 亚洲天堂精品视频| 亚洲蜜桃精久久久久久久| 最新不卡av在线| 亚洲最快最全在线视频| 亚洲不卡av一区二区三区| 亚洲第一久久影院| 日韩和欧美的一区| 国产在线精品一区二区不卡了| 蜜桃一区二区三区在线观看| 精品无码三级在线观看视频| 国产麻豆一精品一av一免费| 国产91清纯白嫩初高中在线观看| 国产一区二区三区| 99re8在线精品视频免费播放| eeuss鲁片一区二区三区在线观看| 国产成人免费在线观看不卡| 97精品国产露脸对白| 欧美亚洲丝袜传媒另类| 欧美一区二区三区公司| 国产色产综合色产在线视频| 一区二区在线观看免费视频播放| 亚洲精品成人少妇| 男人的j进女人的j一区| 成人免费看片app下载| 色呦呦网站一区| 日韩免费观看2025年上映的电影 | 成人综合在线视频| 欧美羞羞免费网站| 精品久久久久久久久久久久包黑料 | 亚洲欧美综合色| 亚洲成a人片综合在线| 亚洲福利视频一区| 国产美女精品人人做人人爽| 91美女视频网站| 欧美电影免费观看完整版| 自拍偷拍亚洲激情| 久久丁香综合五月国产三级网站| 精品一区二区三区视频| 色婷婷精品大视频在线蜜桃视频 | 日韩黄色一级片| 成人午夜免费av| 3d动漫精品啪啪| 亚洲激情五月婷婷| 国产一区二区精品久久99| 欧美日本国产一区| 亚洲视频1区2区| 国产99久久久久|