日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代做3 D printer materials estimation編程

時間:2024-02-21  來源:  作者: 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct 90% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a 1-row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫game of Bingo cards
  • 下一篇:代寫PLAN60722 – Urban Design Project
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              欧美日本免费一区二区三区| 亚洲男人第一网站| 国产精品日本| 久久久xxx| 亚洲自拍三区| 99re66热这里只有精品4| 激情六月婷婷综合| 国产日韩成人精品| 欧美日韩系列| 欧美黄色一区二区| 蜜乳av另类精品一区二区| 欧美一区二区三区在线观看视频| 日韩视频一区二区在线观看| 影音欧美亚洲| 国产日韩欧美亚洲| 欧美亚州韩日在线看免费版国语版| 免费久久精品视频| 久久久亚洲国产美女国产盗摄| 亚洲无亚洲人成网站77777| 亚洲精品中文字幕在线观看| 亚洲风情亚aⅴ在线发布| 国产中文一区| 精品成人在线视频| 国产在线观看一区| 狠狠综合久久| 狠狠干狠狠久久| 黄色日韩网站| 在线看日韩av| 亚洲国产精品成人一区二区| 亚洲国产欧美在线人成| 91久久嫩草影院一区二区| 亚洲黄色毛片| 99国产麻豆精品| 一区二区激情小说| 在线亚洲成人| 性做久久久久久| 久久久7777| 免费久久久一本精品久久区| 欧美aⅴ99久久黑人专区| 欧美国产欧美亚州国产日韩mv天天看完整 | 久久国产精品毛片| 久久久另类综合| 欧美成人免费网| 欧美精品一卡| 国产精品夜色7777狼人| 国产欧美在线观看| 亚洲国产精品久久久| 日韩亚洲一区二区| 欧美一级专区| 裸体女人亚洲精品一区| 国产精品99免费看| 国产一区二区三区的电影| 亚洲国产精品欧美一二99| 亚洲视频在线一区| 久久久久久电影| 欧美色大人视频| 狠狠爱成人网| 亚洲一区激情| 美女91精品| 国产精品一区二区三区观看| 在线欧美日韩国产| 午夜精品久久久久久99热| 老司机成人在线视频| 欧美亚洲第一页| 亚洲国产精品成人一区二区 | 一本到12不卡视频在线dvd| 欧美一区亚洲二区| 欧美日本视频在线| 在线电影一区| 久久成人av少妇免费| 欧美午夜片在线观看| 在线观看国产精品网站| 午夜一区不卡| 欧美日韩亚洲一区二区三区在线 | 久久嫩草精品久久久精品| 欧美日韩在线一区二区| 影音先锋久久| 久久岛国电影| 国产欧美三级| 亚洲无线一线二线三线区别av| 欧美ab在线视频| 国产一区二区精品久久| 午夜精品久久久久久99热软件| 欧美日韩国产三区| 亚洲精品美女在线观看| 欧美成人免费在线观看| 一区二区在线视频| 欧美在线你懂的| 国产精品一卡二| 亚洲欧美一区二区激情| 国产精品成av人在线视午夜片| 亚洲精品影院| 欧美精选午夜久久久乱码6080| 亚洲第一级黄色片| 蜜桃久久av| 亚洲欧洲精品成人久久奇米网| 久久综合国产精品台湾中文娱乐网| 韩国视频理论视频久久| 久久国产综合精品| 一区二区三区在线看| 久久久久久欧美| 激情文学一区| 老鸭窝毛片一区二区三区| 在线观看成人av| 免费亚洲一区二区| 99精品欧美一区二区三区综合在线| 欧美大片在线观看| 日韩视频免费观看| 欧美日韩小视频| 亚洲一区黄色| 黄色国产精品一区二区三区| 狼人天天伊人久久| 日韩视频免费大全中文字幕| 欧美日韩调教| 欧美亚洲一区三区| 一区二区三区自拍| 欧美日韩黄视频| 午夜精品视频| 亚洲国产精品成人一区二区| 欧美午夜精品久久久久免费视| 欧美在线视频免费播放| 1204国产成人精品视频| 欧美三级资源在线| 久久久免费精品| 夜夜嗨av一区二区三区网站四季av | 欧美在现视频| 亚洲精品系列| 国产亚洲激情在线| 欧美成人官网二区| 亚洲欧美日韩国产综合| 亚洲国产第一| 国产精品嫩草影院av蜜臀| 免费高清在线视频一区·| 亚洲永久免费| 亚洲欧洲一区二区在线观看| 国产精品地址| 欧美激情中文字幕在线| 久久精品天堂| 亚洲专区欧美专区| 亚洲美女视频在线免费观看| 狠狠色综合色区| 国产精品中文在线| 欧美看片网站| 另类专区欧美制服同性| 亚洲欧美在线网| 在线亚洲免费| 亚洲精品乱码久久久久久蜜桃91| 国产亚洲成av人片在线观看桃| 欧美日韩免费一区二区三区视频 | 亚洲激情国产| 韩国欧美国产1区| 国产农村妇女精品| 国产精品va在线播放| 欧美激情1区| 女人色偷偷aa久久天堂| 久久精品免费观看| 欧美一区=区| 午夜精品久久久久久久久久久久久 | 国产欧美一区二区三区视频| 欧美四级剧情无删版影片| 欧美jizz19hd性欧美| 噜噜噜91成人网| 蜜乳av另类精品一区二区| 久久久一本精品99久久精品66| 久久精品观看| 久久久久久噜噜噜久久久精品| 久久久精彩视频| 久久久久网站| 久热这里只精品99re8久| 狂野欧美激情性xxxx欧美| 久久激情视频| 麻豆精品视频在线| 欧美大片一区二区| 欧美伦理视频网站| 欧美精品一区二区三区一线天视频 | 亚洲欧美亚洲| 性视频1819p久久| 久久国产精品久久久| 久久日韩精品| 欧美日韩高清区| 国产精品欧美风情| 国产一区二区三区黄| 亚洲福利专区| 99日韩精品| 欧美一区二区三区免费视频| 久久久久91| 欧美日本二区| 国产日韩欧美综合| 亚洲人成亚洲人成在线观看图片 | 在线一区二区三区四区五区| 亚洲欧美日韩另类| 毛片av中文字幕一区二区| 欧美精品首页| 国产在线视频不卡二| 亚洲精品色图| 久久精品国产视频| 欧美日韩一区高清| 伊人精品在线| 亚洲综合电影| 欧美成人一品|