日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代寫 CSSE7030 Connect 4

時(shí)間:2024-03-09  來(lái)源:  作者: 我要糾錯(cuò)


 Connect 4 (ish)


Assignment 1

Semester 1, 2024

CSSE7030

Due date: 22 March 2024, 16:00 GMT+10

1 Introduction

In this assignment, you will implement a text-based version of Connect 4, with some rule modifi-cations inspired by this version developed by Hasbro Inc. The rules of this game are very similar to regular connect four: Two players each have a set of pieces (In our text-based version player 1’s pieces are represented by X, and player 2’s pieces are represented by O). Players take turns to place pieces in one of 8 columns. These pieces are affected by gravity and fall into the lowest empty space out of 8 rows within each column. The objective for each player is to be the first to form an unbroken line with 4 of their own pieces. These lines can occur either vertically, horizontally, or diagonally. The twist with this version of the game is that, on their turn, instead of placing a piece at the top of a column, a player may choose to ’pop out’ a piece from the bottom of a column. All pieces within the chosen column will then ’fall down’ one row, interrupting the opponents plans, and potentially forming an unbroken line of 4 pieces of one kind. A nifty feature of this ’pop out’ mechanic is that it also prevents stalemates from occuring. As such, the game is only over when either:

1. One player wins by creating an unbroken line (horizontal, vertical, or diagonal) of at least 4 of their own pieces at the end of a turn, while not creating an unbroken line of 4 of the other player’s pieces at the end of the same turn.

2. The players draw because at the end of a turn both players posess an unbroken line (hor-izontal, vertical, or diagonal) of at least 4 of their own pieces (This can happen when a player pops out a piece).

2 Getting Started

Download a1.zip from Blackboard — this archive contains the necessary files to start this as-signment. Once extracted, the a1.zip archive will provide the following files:

a1.py This is the only file you will submit and is where you write your code. Do not make changes to any other files.

a1_support.py Do not modify or submit this file, it contains pre-defined constants to use in your assignment. In addition to these, you are encouraged to create your own constants in a1.py where possible.

gameplay/ This folder contains a number of example outputs generated by playing the game using a fully-functional completed solution to this assignment. The purpose of the files in this folder is to help you understand how the game works, and how output should be formatted.

NOTE: You are not permitted to add any additional import statements to a1.py. Doing so will result in a deduction of up to 100% of your mark. You must not modify or remove the two import statements already provided to you in a1.py. Removing or modifying these existing import statements may result in your code not functioning, and in some cases will result in a deduction of up to 100% of your mark.

3 Gameplay

This section provides an overview of gameplay. Where prompts and outputs are not explicitly mentioned in this section, please see Section 4 and the example games in the gameplay/ folder provided with this assignment.

The game begins with an empty board of rows separated into columns. The board will be square (that is, number of rows will be the same as the number of columns). The number of columns is specified by BOARD SIZE in a1 support.py.

Player 1 ( X ) gets to make the first move. Until the end of the game, the following steps occur:

1. The current game board state is displayed.

2. The user is informed whose turn it is to move.

3. The user is prompted to enter a command, and then enters one. See Table 1 for the set of valid commands and the actions performed when they are entered. The gameplay/ folder provided with this assignment presents specific examples for what to do on each command.

4. If the move is invalid for any reason, the user is shown a message to inform them of why their move was invalid (see Table 2 for all required validity checking and messages for this step), and then the program returns to step 3. If the move is valid, the program progresses to the next step.

5. The board is updated according to the requested move, and the updated board state is displayed.

6. If the game is over (Due to either a win or a draw), the program continues to the next step. Otherwise, the program returns to step 1.

7. When the game is over, the users are informed of the outcome.

8. The users are prompted as to whether they would like to play again. At this prompt, if they enter either ‘y’ or ‘Y’, a new game is created (i.e. an empty board is set up and the game returns to player 1’s turn) and the program returns to step 1. If they enter anything other than ‘y’ or ‘Y’, the program should terminate gracefully (that is, the program should end without causing any errors or exiting the test suite).



Table 1: Valid commands and the actions that should be taken. If the command entered by the user does not exactly match one of the commands in this table then no action should be taken for step 3 and the program should move directly to step 4



Table 2: Constants containing the messages to display when invalid user input is entered. Prece-dence is top down (i.e. if there are multiple issues with user input, only display the message for the one which occurs first in this table).

Your program should function correctly when BOARD_SIZE is changed to a different (positive) value. You are not expected to correct for desynchronising column labels in display_board when BOARD_SIZE is greater than 9, but you should ensure all other functions work correctly in this case. We will only test your code with BOARD_SIZE values in the range [4, 10] (that is, 4 to 10 inclusive). However, you ideally should not hardcode your solution to only work for values in the range 4 to 10; these are simply provided as guarantees for the range of values we will test within. A well written solution would likely generalize to other grid sizes.

For examples of how output should update for different grid sizes, please see the 7030_BOARD_SIZE_4.txt and 7030_BOARD_SIZE_10.txt files in gameplay/.

4 Implementation

Permitted Techniques:

This assesment has been designed to allow you to practice what you have learnt in this course so far. As such, you must only use the functions, operators and data types presented to you in lectures up to (and including) Topic 4B (Lists). Namely, the following techniques are permitted for use in this assignment:

• Functions (def,return)

• Basic control structures (for, while, if, break)

• Primitive data types (int, str, bool etc.)

• Variable assignment (=)

• Arithmetic (+,-,*,,\, ,% etc.)

• Comparison (==,<=,>=,<,>,!= etc.)

• Basic Logic (not, and, or etc.)

• lists and tuples

• range and enumerate

• input and print

Using any functions, operators and data types that have not been presented to you in lectures up to (and including) Topic 4B (Lists) will result in a deduction of up to 100% of your mark.

A pinned thread will be maintained on the Ed discussion board with a list of permitted techniques. If you would like clarification on whether you are permitted to use a specific technique, please first check this list. If the technique has not been mentioned, please ask about permission to use the technique in a comment on this pinned thread.

Required Functions

This section outlines the functions you are required to implement in your solution (in a1.py only). You are awarded marks for the number of tests passed by your functions when they are tested independently of one another. Thus an incomplete assignment with some working functions may well be awarded more marks than a complete assignment with faulty functions. Your pro-gram must operate exactly as specified. In particular, your program’s output must match exactly with the expected output. Your program will be marked automatically so minor differences in output (such as whitespace or casing) will cause tests to fail resulting in a zero mark for that test.

Each function is accompanied with some examples for usage to help you start your own testing. You should also test your functions with other values to ensure they operate according to the descriptions.

The following functions must be implemented in a1.py. They have been listed in a rough order of increasing difficulty. This does not mean that earlier functions are necessarily worth less marks than later functions. It is highly recommended that you do not begin work on a later function until each of the preceding functions can at least behave as per the shown examples. You may implement additional functions if you think they will help with your logic or make your code easier to understand.

4.1 num_hours() -> float

This function should return the number of hours you estimate you spent (or have spent so far) on the assignment, as a float. Ensure this function passes the relevant test on Gradescope as soon as possible. The test will only ensure you have created a function with the correct name and number of arguments, which returns a float and does not prompt for input. You will not be marked incorrect for returning the ‘wrong’ number of hours. The purpose of this function is to enable you to verify that you understand how to submit to Gradescope as soon as possible, and to allow us to gauge difficulty level of this assignment in order to provide the best possible assistance. You will not be marked differently for spending more or less time on the assignment.

If the Gradescope tests have been released, you must ensure this function passes the relevant test before seeking help regarding Gradescope issues for any of the later functions. See Section 5.3 for instructions on how to submit your assignment to Gradescope.

4.2 generate_initial_board() -> list[str]

Returns the initial board state (i.e. an empty board state). The board is represented by a list of strings. Each column is represented by a string of characters. The first string in the list represents the leftmost column of the game board, and the last string in the list represents the rightmost column of the game board. The first character of each string represents the top of the associated column, and the last character of the string represents the bottom of the associated column. The number of columns is given by the BOARD_SIZE constant.

Example:

>>> generate_initial_board()

['--------', '--------', '--------', '--------', '--------', '--------', '--------', '--------']

4.3 is column full(column: str) -> bool

Returns True if the given column is full, and False otherwise. You may assume that column will represent a valid column state (i.e. no blank spaces between pieces).

Example:

>>> column = "---XOXXX"

>>> is_column_full(column)

False

>>> column = "OXXOOXOO"

>>> is_column_full(column)

True

4.4 is column empty(column: str) -> bool

Returns True if the given column is empty, and False otherwise. You may assume that column will represent a valid column state (i.e. no blank spaces between pieces).

Example:

>>> column = "--------"

>>> is_column_empty(column)

True

>>> column = "-----XXO"

>>> is_column_empty(column)

False

4.5 display board(board: list[str]) -> None

Prints the game board to the terminal with columns separated by pipe characters (—) and num-bered below. The printed output must exactly match the format as presented in examples. Note that different system fonts may cause spacing to appear different on your machine. A precondition to this function is that the input board will contain strings, each with exactly as many characters as there are strings in the board (that is, the board will be square). You should not perform any additional validity checking (that is, do not check that the board represents a valid game state).

Example:

>>> board = generate_initial_board()

>>> display_board(board)

|-|-|-|-|-|-|-|-|

|-|-|-|-|-|-|-|-|

|-|-|-|-|-|-|-|-|

|-|-|-|-|-|-|-|-|

|-|-|-|-|-|-|-|-|

|-|-|-|-|-|-|-|-|

|-|-|-|-|-|-|-|-|

|-|-|-|-|-|-|-|-|

1 2 3 4 5 6 7 8

>>> board = ['--------', '----OOOO', 'XXXXXXXX', '--------', '------XO', '--------', '---XXOXO', '--------']

>>> display_board(board)

|-|-|X|-|-|-|-|-|

|-|-|X|-|-|-|-|-|

|-|-|X|-|-|-|-|-|

|-|-|X|-|-|-|X|-|

|-|O|X|-|-|-|X|-|

|-|O|X|-|-|-|O|-|

|-|O|X|-|X|-|X|-|

|-|O|X|-|O|-|O|-|

1 2 3 4 5 6 7 8

>>> board = ['Ashleigh', ' ', '-----W--', 'B----i--', '-r---l--', '--a--s--', '---e-o--', '-----n--']

>>> display_board(board)

|A| |-|B|-|-|-|-|

|s| |-|-|r|-|-|-|

|h| |-|-|-|a|-|-|

|l| |-|-|-|-|e|-|

|e| |-|-|-|-|-|-|

|i| |W|i|l|s|o|n|

|g| |-|-|-|-|-|-|

|h| |-|-|-|-|-|-|

1 2 3 4 5 6 7 8

4.6 check input(command: str) -> bool

Returns True if command is a well formatted, invalid command as described in the first two rows of Table 2, and False otherwise. Note that user inputs will be 1-indexed (That is, users will enter numbers corresponding to the columns as numbered in the print out by display_board). In the event that command is ill-formed, this function should also display the relevant error message to the user before returning False. This function should not check whether the command violates any game rules. Note that the user entered column may not be a single digit number.

Example:

>>> command = "a1"

>>> check_input(command)

True

>>> command = "r1"

>>> check_input(command)

True

>>> command = "a3"

>>> check_input(command)

True

>>> command = "h"

>>> check_input(command)

True

>>> command = "1r"

>>> check_input(command)

Invalid command. Enter 'h' for valid command format

False

>>> command = "a3 "

>>> check_input(command)

Invalid command. Enter 'h' for valid command format

False

>>> command = "a9"

>>> check_input(command)

Invalid column, please enter a number between 1 and 8 inclusive

False

>>> command = ""

>>> check_input(command)

Invalid command. Enter 'h' for valid command format

False

4.7 get action() -> str

This function should repeatedly prompt the user for a command until they enter a command that is valid according to check_input, and return the first valid command entered by the user. This function should also result in messages being displayed as described in the specification for check_input whenever the user enters an invalid command.

Example:

>>> get_action()

Please enter action (h to see valid commands): r-1

Invalid command. Enter 'h' for valid command format

Please enter action (h to see valid commands): a

Invalid command. Enter 'h' for valid command format

Please enter action (h to see valid commands): r4

'r4'

>>> get_action()

Please enter action (h to see valid commands): g

Invalid command. Enter 'h' for valid command format

Please enter action (h to see valid commands): help

Invalid command. Enter 'h' for valid command format

Please enter action (h to see valid commands): H

'H'

4.8 add_piece(board: list[str], piece: str, column_index: int) -> bool

Adds the specified piece to the column at the given column index (0-indexed) of the given board according to the game rules. The piece will be added to the topmost available space in the requested column. If the requested column is full, then a piece is not added and a message is displayed to the user as described in Table 2. This function should return True if a piece was able to be added to the board, and False otherwise. Note that this function mutates the given board and does not return a new board state.

A precondition to this function is that the specified board will contain strings, each with exactly as many characters as there are strings in the board (that is, the board will be square). Another precondition is that the specified board will represent a valid game state. A third precondition to this function is that the specified column index will be valid. The last precondition to this function is that the given piece will be exactly one character in length.

Example:

>>> board = ['--------', '----OOOO', 'XXXXXXXX', '--------', '------XO', '--------', '---XXOXO', '--------']

>>> add_piece(board, "X", 1)

True

>>> board

['--------', '---XOOOO', 'XXXXXXXX', '--------', '------XO', '--------', '---XXOXO', '--------']

>>> add_piece(board, "O", 2)

You can't add a piece to a full column!

False

>>> board

['--------', '---XOOOO', 'XXXXXXXX', '--------', '------XO', '--------', '---XXOXO', '--------']

>>> add_piece(board, "e", 1)

True

>>> board

['--------', '--eXOOOO', 'XXXXXXXX', '--------', '------XO', '--------', '---XXOXO', '--------']

4.9 remove piece(board: list[str], column index: int) -> bool

Removes the bottom-most piece from the column at the given column_index (0-indexed) of the given board according to the game rules, and moves all other pieces in the relevant column down a row. If the requested column is empty, then a piece is not removed and a message is displayed to the user as described in Table 2. Returns True if a piece was removed from the board, and False otherwise. Note that this function mutates the given board and does not return a new board state.

A precondition to this function is that the specified board will contain strings, each with exactly as many characters as there are strings in the board (that is, the board will be square). Another precondition is that the specified board will represent a valid game state. The last precondition to this function is that the specified column index must be a valid column index.

Example:

>>> board = ['--------', '----OOOO', 'XXOOOXXX', '--------', '------XO', '--------', '---XXOXO', '--------']

>>> remove_piece(board, 2)

True

>>> board

['--------', '----OOOO', '-XXOOOXX', '--------', '------XO', '--------', '---XXOXO', '--------']

>>> remove_piece(board, 0)

You can't remove a piece from an empty column!

False

>>> board

['--------', '----OOOO', '-XXOOOXX', '--------', '------XO', '--------', '---XXOXO', '--------']

4.10 check win(board: list[str]) -> Optional[str]

Checks the given board state for a win or draw. If one player has formed an unbroken line (horizontal, vertical, or diagonal) of at least 4 of their own pieces, then this function returns that players piece. If both players have formed unbroken lines (horizontal, vertical, or diagonal) of at least 4 of their own pieces, then this function returns the blank piece. If neither player has formed an unbroken line (horizontal, vertical, or diagonal) of at least 4 of their own pieces, then this function returns None.

A precondition to this function is that the specified board will contain strings, each with exactly as many characters as there are strings in the board. Another precondition to this function is that all characters will be one of either X,O, or - within strings in the specified board. Example:

9>>> board = ['------XO', '-------O', '--------', '--------', '-------O', '--------', '--------', '------XX']

>>> check_win(board)

>>> board = ['-------O', '------OX', '-----OXO', '---XOOXX', '--------', '--------', '--------', '--------']

>>> check_win(board)

'O'

>>> board = ['-------X', '-------X', '------OX', '---OOOXX', '--------', '--------', '--------', '--------']

>>> check_win(board)

'X'

>>> board = ['---XXXXO', '-------O', '-------O', '-------O', '--------', '--------', '--------', '--------']

>>> check_win(board)

'-'

>>> board = ['--------', '--------', '---O----', '---O----', '---O----', '---O----', '--------', '--------']

>>> check_win(board)

'O'

4.11 play_game() -> None

Coordinates gameplay of a single game from start to finish. This function should follow steps 1 to 7 (inclusive) presented in section 3. The play_game function should utilize other functions you have written. In order to make the play game function shorter, you should consider writing extra helper functions.

The output from your play_game function (including prompts) must exactly match the expected output. Running the sample tests will give you a good idea of whether your prompts and other outputs are correct. Use samples of gameplay from the gameplay/ folder provided with this assignment for examples of how the play_game function should run.

4.12 main() -> None

The main function should be called when the file is run. The main function enacts a game of connect 4 using the play_game function, and then follows step 8 presented in section 3.

The gameplay/ folder provided with this assignment contains full gameplay examples which should demonstrate how the main function should run.

In the provided a1.py, the function definition for main has already been provided, and the if _ _name_ _  == " _ _main_ _ ": block will ensure that the code in the main function is run when your a1.py file is run. Do not call your main function outside of this block, and do not call any other function outside this block unless you are calling them from within the body of another function.

5 Assessment and Marking Criteria

This assignment assesses course learning objectives:

1. apply program constructs such as variables, selection, iteration and sub-routines,

2. read and analyse code written by others,

3. read and analyse a design and be able to translate the design into a working program, and

4. apply techniques for testing and debugging.

5.1 Functionality

Your program’s functionality will be marked out of a total of 6 marks. Your assignment will be put through a series of tests and your functionality mark will be proportional to the number of tests you pass. You will be given a subset of the functionality tests before the due date for the assignment.

You may receive partial marks within each section for partially working functions, or for imple-menting only a few functions.

You need to perform your own testing of your program to make sure that it meets all specifi-cations given in the assignment. Only relying on the provided tests is likely to result in your program failing in some cases and you losing some functionality marks. Note: Functionality tests are automated, so string outputs need to match exactly what is expected.

Your program must run in Gradescope, which uses Python 3.12. Partial solutions will be marked but if there are errors in your code that cause the interpreter to fail to execute your program, you will get zero for functionality marks. If there is a part of your code that causes the interpreter to fail, comment out the code so that the remainder can run. Your program must run using the Python 3.12 interpreter. If it runs in another environment (e.g. Python 3.8 or PyCharm) but not in the Python 3.12 interpreter, you will get zero for the functionality mark.

5.2 Code Style

The style of your assignment will be assessed by a tutor. Style will be marked according to the style rubric provided with the assignment. The style mark will be out of 4.

The key consideration in marking your code style is whether the code is easy to understand. There are several aspects of code style that contribute to how easy it is to understand code. In this assignment, your code style will be assessed against the following criteria.

• Readability

– Program Structure: Layout of code makes it easy to read and follow its logic. This includes using whitespace to highlight blocks of logic.

– Descriptive Identifier Names: Variable, constant, and function names clearly describe what they represent in the program’s logic. Do not use Hungarian Notation for identi-fiers. In short, this means do not include the identifier’s type in its name, rather make the name meaningful (e.g. employee identifier).

– Named Constants: Any non-trivial fixed value (literal constant) in the code is repre-sented by a descriptive named constant (identifier).

• Algorithmic Logic

– Single Instance of Logic: Blocks of code should not be duplicated in your program. Any code that needs to be used multiple times should be implemented as a function.

– Variable Scope: Variables should be declared locally in the function in which they are needed. Global variables should not be used.

– Control Structures: Logic is structured simply and clearly through good use of control structures (e.g. loops and conditional statements).

• Documentation:

– Comment Clarity: Comments provide meaningful descriptions of the code. They should not repeat what is already obvious by reading the code (e.g. # Setting variable to 0). Comments should not be verbose or excessive, as this can make it difficult to follow the code.

– Informative Docstrings: Every function should have a docstring that summarises its purpose. This includes describing parameters and return values (including type infor-mation) so that others can understand how to use the function correctly.

– Description of Logic: All significant blocks of code should have a comment to explain how the logic works. For a small function, this would usually be the docstring. For long or complex functions, there may be different blocks of code in the function. Each of these should have an in-line comment describing the logic.

5.3 Assignment Submission

You must submit your assignment electronically via Gradescope (https://gradescope.com/). You must use your UQ email address which is based on your student number (e.g. s4123456@student.uq.edu.au) as your Gradescope submission account.

When you login to Gradescope you may be presented with a list of courses. Select CSSE7030. You will see a list of assignments. Choose Assignment 1. You will be prompted to choose a file to upload. The prompt may say that you can upload any files, including zip files. You must submit your assignment as a single Python file called a1.py (use this name – all lower case), and nothing else. Your submission will be automatically run to determine the functionality mark. If you submit a file with a different name, the tests will fail and you will get zero for functionality. Do not submit any sort of archive file (e.g. zip, rar, 7z, etc.).

Upload an initial version of your assignment at least one week before the due date. Do this even if it is just the initial code provided with the assignment. If you are unable access Gradescope, contact the course helpdesk (csse7030@eecs.uq.edu.au) immediately. Excuses, such as you were not able to login or were unable to upload a file will not be accepted as reasons for granting an extension.

When you upload your assignment it will run a subset of the functionality autograder tests on your submission. It will show you the results of these tests. It is your responsibility to ensure that your uploaded assignment file runs and that it passes the tests you expect it to pass.

Late submissions of the assignment will not be marked. Do not wait until the last minute to submit your assignment, as the time to upload it may make it late. Multiple submissions are allowed and encouraged, so ensure that you have submitted an almost complete version of the assignment well before the submission deadline of 16:00. Your latest, on time, submission will be marked. Ensure that you submit the correct version of your assignment.

In the event of exceptional personal or medical circumstances that prevent you from handing in the assignment on time, you may submit a request for an extension. See the course profile for details of how to apply for an extension.

Requests for extensions must be made before the submission deadline. The application and supporting documentation (e.g. medical certificate) must be submitted via my.UQ. You must retain the original documentation for a minimum period of six months to provide as verification, should you be requested to do so.

5.4 Plagiarism

This assignment must be your own individual work. By submitting the assignment, you are claim-ing it is entirely your own work. You may discuss general ideas about the solution approach with other students. Describing details of how you implement a function or sharing part of your code with another student is considered to be collusion and will be counted as plagiarism. You may not copy fragments of code that you find on the Internet to use in your assignment.

Please read the section in the course profile about plagiarism. You are encouraged to complete both parts A and B of the academic integrity modules before starting this assignment. Submitted assignments will be electronically checked for potential cases of plagiarism.
請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 


 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁(yè)
  • 上一篇:CSC8208代做、代寫Java/c++編程設(shè)計(jì)
  • 下一篇:COMP 315 代做、代寫 java 語(yǔ)言編程
  • 無(wú)相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
    昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗(yàn)證碼平臺(tái) 幣安官網(wǎng)下載 歐冠直播 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        夜夜揉揉日日人人青青一国产精品| 欧美日本视频在线| 欧美性色黄大片| 亚洲国产精品成人综合| 国产资源精品在线观看| 欧美大片一区二区三区| 久久精品国产网站| 91精品国产综合久久久蜜臀图片 | 久久成人免费日本黄色| 欧美大肚乱孕交hd孕妇| 黄色小说综合网站| 久久精品在线观看| 成人亚洲精品久久久久软件| 日韩久久一区二区| 91国偷自产一区二区使用方法| 一个色综合av| 7878成人国产在线观看| 日本伊人色综合网| 欧美精品一区二区在线播放| 国产一区二区三区在线观看免费 | 捆绑调教一区二区三区| 日韩精品在线一区二区| 国产一区二区调教| 亚洲天堂成人在线观看| 91浏览器打开| 三级成人在线视频| 国产三级精品三级在线专区| 一本一本久久a久久精品综合麻豆| 亚洲一区二区三区三| 日韩区在线观看| 国产成人精品一区二区三区四区 | 国产精品久久福利| 91黄色免费观看| 久久不见久久见中文字幕免费| 日本一区二区综合亚洲| 在线视频国内自拍亚洲视频| 免费成人性网站| 中文字幕免费不卡| 91精品国产综合久久小美女| 丰满白嫩尤物一区二区| 亚洲成av人片在线| 中文字幕av不卡| 欧美久久久久久久久中文字幕| 国产精品77777竹菊影视小说| 一区二区视频在线看| 日韩久久久精品| 色88888久久久久久影院野外| 青青草原综合久久大伊人精品优势 | 9色porny自拍视频一区二区| 人禽交欧美网站| 蜜桃久久久久久| 97se亚洲国产综合自在线不卡| 欧美日韩国产a| 国产精品第一页第二页第三页| 蜜臀国产一区二区三区在线播放| 91视频免费看| 国产欧美日韩激情| 国产精品91一区二区| 91精品国产综合久久久久| 日韩欧美综合在线| 亚洲国产成人av| 成人午夜精品一区二区三区| 日韩一区二区免费在线电影| 亚洲国产精品久久人人爱| 日本韩国欧美在线| 综合精品久久久| 91亚洲精品一区二区乱码| 国产精品无人区| 99久久伊人久久99| 久久精品一区二区三区av| 激情综合五月天| 久久精品视频在线看| 国产成人综合精品三级| 国产精品毛片a∨一区二区三区| 国产美女精品一区二区三区| 久久久美女毛片| 成人午夜免费av| 亚洲mv大片欧洲mv大片精品| 日韩欧美卡一卡二| 国产黄色精品视频| 一区二区三区在线观看欧美 | 亚洲成人激情社区| 欧美日韩在线播放一区| 日韩va亚洲va欧美va久久| 精品国产免费人成在线观看| 中文字幕成人在线观看| 91影视在线播放| 免费成人在线网站| 一区二区三区蜜桃网| 国产亚洲欧美在线| 一本大道综合伊人精品热热 | 6080国产精品一区二区| 国产一区二区三区免费看| 久久亚洲一级片| 91福利在线观看| 国产成人啪免费观看软件| 日韩精品欧美精品| 亚洲日本护士毛茸茸| 日韩欧美国产一区在线观看| 99re热视频这里只精品| 国产美女一区二区三区| 激情图区综合网| 久久国内精品自在自线400部| 亚洲一级电影视频| 亚洲人妖av一区二区| 国产精品区一区二区三区| 久久亚洲欧美国产精品乐播| 日韩欧美在线综合网| 91精品一区二区三区久久久久久| 精品视频999| 在线播放中文字幕一区| 日本伦理一区二区| 欧美网站一区二区| 91精品国产高清一区二区三区| 91美女精品福利| 一本色道久久综合亚洲精品按摩| 91在线观看地址| 在线观看免费亚洲| 欧美日本一区二区三区| 精品国免费一区二区三区| 精品久久人人做人人爱| 国产精品国产三级国产专播品爱网| 中文av字幕一区| 亚洲va欧美va国产va天堂影院| 蜜臀a∨国产成人精品| 亚洲天堂中文字幕| 亚洲国产精品久久久男人的天堂| 宅男噜噜噜66一区二区66| 国产盗摄视频一区二区三区| 91女人视频在线观看| 欧美va亚洲va香蕉在线| 亚洲视频在线一区| 首页国产丝袜综合| 国产成人精品综合在线观看| 色天使色偷偷av一区二区| 日韩视频免费观看高清完整版 | 国产精品亚洲а∨天堂免在线| 成年人午夜久久久| 日韩区在线观看| 久久91精品国产91久久小草| 国产不卡一区视频| 欧美tickling挠脚心丨vk| 亚洲一区在线观看免费观看电影高清| 韩国一区二区三区| 日韩欧美一区二区视频| 亚洲一区二区美女| 成人免费视频一区二区| 久久精品日产第一区二区三区高清版 | 日韩午夜av一区| 国产精品久久久久久久久图文区 | 久久色在线视频| 日韩一区二区麻豆国产| 久久久久久久久久久电影| 三级久久三级久久| 欧美日精品一区视频| 一区二区三区在线不卡| 91啦中文在线观看| 一区二区日韩电影| 欧美日韩免费观看一区二区三区| 亚洲精品一二三| 欧美日韩精品免费| 日韩激情一区二区| 精品国产乱码久久久久久1区2区| 久久精品国产亚洲高清剧情介绍 | 亚洲精品成a人| 在线不卡免费欧美| 久久国产夜色精品鲁鲁99| 久久你懂得1024| 99精品视频在线观看免费| 久久一二三国产| 91在线码无精品| 麻豆成人免费电影| 国产精品不卡一区| 678五月天丁香亚洲综合网| 国产寡妇亲子伦一区二区| 一区二区欧美视频| 国产亚洲精品bt天堂精选| 91免费国产视频网站| 麻豆精品国产91久久久久久| 中文av一区特黄| 欧美性受极品xxxx喷水| 久久99国产精品尤物| 日本一区二区视频在线| 欧美一区二区三区色| 91免费版pro下载短视频| 国产精品99久久久久久似苏梦涵| 亚洲欧洲制服丝袜| 中文字幕一区二区三区不卡在线 | 成人性色生活片免费看爆迷你毛片| 亚洲国产另类精品专区| 亚洲欧美日韩国产中文在线| 2023国产精品自拍| 欧美一级欧美三级| 欧美日韩性生活| 91色porny蝌蚪| 成人妖精视频yjsp地址| 国内精品久久久久影院色| 麻豆精品在线视频| 奇米精品一区二区三区在线观看一 | 欧美日韩你懂的|