日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

COMP 315 代做、代寫 java 語言編程

時(shí)間:2024-03-10  來源:  作者: 我要糾錯(cuò)



1 Introduction
Assignment 1: Javascript
COMP 315: Cloud Computing for E-Commerce March 5, 2024
A common task in cloud computing is data cleaning, which is the process of taking an initial data set that may contain erroneous or incomplete data, and removing or fixing those elements before formatting the data in a suitable manner. In this assignment, you will be tested on your knowledge of JavaScript by implementing a set of functions that perform data cleaning operations on a dataset.
2 Ob jectives
By the end of this assignment, you will:
• Gain proficiency in using JavaScript for data manipulation.
• Be able to implement various data cleaning procedures, and understand the significance of them. • Have developed problem-solving skills through practical application.
3 Problem description
For this task, you have been provided with a raw dataset of user information. You must carry out the following series of operations:
• Set up a Javascript class in the manner described in Section 4.
• Convert the data into the appropriate format, as highlighted in Section 5
• Fix erroneous values where possible e.g. age being a typed value instead of a number, age being a real number instead of an integer, etc; as specified in Section 6.
• Produce functions that carry out the queries specified in Section 7.
 Data name Title
First name
Middle name Surname Date of birth Age
Email
Note
This value may be either: Mr, Mrs, Miss, Ms, Dr, or left blank.
Each individual must have one. The first character is capitalised and the rest are lower case, with the exception of the first character after a hyphen.
This may be left blank.
Each individual must have one.
This must be in the format of DD/MM/YYYY.
All data were collected on 26/02/2024, and the age values should reflect this.
The format should be [first name].[surname]@example.com. If two individuals have the same address then an ID is added to differentiate them eg john.smith1, john.smith2, etc
Table 1: The attributes that should be stored for each user
         1

4 Initial setup
Create a Javascript file called Data Processing.js. Create a class within that file called Data Processing. Write a function within that class called load CSV that takes in the filename of a csv file as an input, eg load CSV (”User Details”). The resulting data should be saved locally within the class as a global variable called raw user data. Write a function called format data, which will have no variables are a parameter. The functionality of this method is described in Section 5. Write a function called clean data, which will also have no parameters. The functionality of this method is similarly described in Section 6.
5 Format data
Within the function format data, the data stored within raw user data should be processed and output to a global variable called formatted user data. The data are initially provided in the CSV format, with the delimiter being the ’,’ character. The first column of the data is the title and full name of the user. The second and third columns are the date of birth, and age of the user, respectively. Finally, the fourth column is the email of the user. Ensure that the dataset is converted into the appropriate format, outlined in Table 1. This data should be saved in the JSON format (you may use any built in JavaScript method for this). The key for each of the values should be names shown in the ’Data name’ column, however converted to lower case with an underscore instead of a space character eg ’first name’.
6 Data cleaning
Within the function clean data, the data cleaning tasks should be carried out, loading the data stored in formatted user data. All of this code may be written within the clean data function, or may be handled by a series of functions that are called within this class. The latter option is generally considered better practice. Examine the data in order to determine which values are in the incorrect format or where values may be missing. If a value is in the incorrect format then it must be converted to be in the correct format. If a value is missing or incorrect, then an attempt should be made to fill in that data given the other values. The cleaned data should be saved into the global variable cleaned user data.
7 Queries
Often, once the data has been processed, we perform a series of data analysis tasks on the cleaned data. Each of these queries are outlined in Table 2. Write a function with the name given in the ’Function name’ column, that carries out the query given in the corresponding ’Query description’. The answer should be returned by the function, and not stored locally or globally.
 Function name
most common surname average age
youngest dr
most common month
Query description
What is the most common surname name?
What is the average age of the users, given the values stored in the ’age’ column? This should be a real number to 3 significant figures.
Return all of the information about the youngest individual in the dataset with the title Dr.
What is the most common month for individuals in the data set?
        percentage titles
 What percentage of the dataset has each of the titles? Return this in the form of an array, following the order specified in the ’Title’ row of Table 1. This should included the blank title, and the percentage should be rounded to the nearest integer using bankers rounding.
  percentage altered
 A number of values have been altered between formatted user data and cleaned user data. What percentage of values have been altered? This should be a real number to 3 significant figures.
  Table 2: The queries that should be carried out on the cleaned data
2

8 Marking
The marking will be carried out automatically using the CodeGrade marking platform. A series of unit tests will be ran, and the mark will correspond with how many of those unit tests were successfully executed. Your work will be submitted to an automatic plagiarism/collusion detection system, and those exceeding a threshold will be reported to the Academic Integrity Officer for investigation regarding adhesion to the university’s policy https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix L cop assess.pdf.
9 Deadline
The deadline is 23:59 GMT Friday the 22nd of March 2024. Late submissions will have the typical 5% penalty applied for each day late, up to 5 days. Submissions after this time will not be marked. https: //www.liverpool.ac.uk/aqsd/academic-codes-of-practice/code-of-practice-on-assessment/
請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫 CSSE7030 Connect 4
  • 下一篇:代做ACS61012、代寫ACS61012 Machine Vision
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級(jí)風(fēng)景名勝區(qū)
    昆明西山國家級(jí)風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗(yàn)證碼平臺(tái) 幣安官網(wǎng)下載 歐冠直播 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        中文字幕一区三区| 亚洲色图制服丝袜| 最新日韩在线视频| 国产美女精品人人做人人爽| 欧美一区欧美二区| 午夜精品视频在线观看| 9人人澡人人爽人人精品| 欧美国产综合色视频| 国产又粗又猛又爽又黄91精品| 欧美成人伊人久久综合网| 日韩高清一区二区| 日韩精品在线看片z| 国产一二精品视频| 国产三级三级三级精品8ⅰ区| 经典三级在线一区| 欧美国产精品一区| 日韩高清一区二区| 欧美草草影院在线视频| 精品一区中文字幕| 亚洲国产高清aⅴ视频| av激情亚洲男人天堂| 一区二区三区四区高清精品免费观看 | 亚洲黄色在线视频| 欧美日本一区二区三区| 日韩国产欧美视频| 国产精品毛片a∨一区二区三区| 色综合视频一区二区三区高清| 午夜精品123| 国产亚洲精品bt天堂精选| 欧美亚洲动漫制服丝袜| 韩国三级电影一区二区| 日韩一区在线播放| 欧美一卡二卡在线| 久久国产精品区| 国产欧美日韩激情| 欧美剧情电影在线观看完整版免费励志电影| 青青草原综合久久大伊人精品优势| 亚洲精品在线电影| 欧美视频一区二区三区在线观看| 日韩av中文在线观看| 国产午夜精品久久| 欧美欧美午夜aⅴ在线观看| 国产成人日日夜夜| 日韩成人伦理电影在线观看| 久久午夜免费电影| 欧美精品v国产精品v日韩精品| 亚洲一区二区在线播放相泽| 久久老女人爱爱| 欧美日本高清视频在线观看| 丰满白嫩尤物一区二区| 蜜桃视频一区二区三区| 亚洲人成电影网站色mp4| 日韩免费观看高清完整版 | 91精品国产色综合久久不卡电影| 经典三级一区二区| 天天色综合成人网| 亚洲综合偷拍欧美一区色| 精品电影一区二区三区| 欧美精品第一页| 欧美伊人精品成人久久综合97| 国产超碰在线一区| 国产精品一二三四五| 麻豆成人免费电影| 秋霞午夜av一区二区三区| 亚洲va中文字幕| 亚洲欧美日本韩国| 中文字幕日韩欧美一区二区三区| 久久美女艺术照精彩视频福利播放 | 国产伦精品一区二区三区免费迷 | 狠狠色狠狠色综合日日91app| 中文欧美字幕免费| 国产午夜精品在线观看| 日韩欧美国产wwwww| 91精品欧美综合在线观看最新| 欧美色视频在线| 精品成人免费观看| 久久久国产精华| 欧美激情综合在线| 一区二区视频免费在线观看| 亚洲欧洲精品一区二区三区不卡| 亚洲精品成a人| 日本亚洲视频在线| 成人永久aaa| 91精品国产品国语在线不卡| 久久亚区不卡日本| 视频一区二区不卡| www.日韩在线| 欧美成人免费网站| 一区二区三区精品视频在线| 精品在线免费观看| 欧美日韩国产a| 中文字幕一区av| 国产乱人伦偷精品视频免下载| 91网站黄www| 国产拍欧美日韩视频二区 | 一区二区免费视频| 国产精品1024| 日韩精品一区二区三区视频在线观看 | 欧美v日韩v国产v| 夜色激情一区二区| 成人黄色软件下载| 精品免费日韩av| 视频一区二区三区在线| 91老师国产黑色丝袜在线| 中文字幕国产一区| 国产成a人亚洲精品| 久久久蜜桃精品| 久久66热偷产精品| 日韩一区二区在线看片| 亚洲国产日韩av| 9人人澡人人爽人人精品| 久久久久国色av免费看影院| 青青草国产精品亚洲专区无| 欧美美女激情18p| 亚洲国产精品久久久久婷婷884| 91福利在线导航| 国产精品青草久久| 国产suv精品一区二区三区| 国产日韩精品久久久| 国产成人综合亚洲91猫咪| 国产视频一区不卡| 成人综合在线视频| 国产精品久久免费看| 粉嫩一区二区三区在线看| 国产精品色呦呦| 不卡欧美aaaaa| 亚洲精品视频观看| 欧美三区在线观看| 日韩av在线播放中文字幕| 日韩精品中文字幕一区二区三区 | 色综合久久久久久久久| 亚洲欧洲无码一区二区三区| 一本一本大道香蕉久在线精品| 亚洲欧美激情视频在线观看一区二区三区 | 丰满少妇久久久久久久| 国产日韩欧美a| 99精品视频中文字幕| 亚洲综合区在线| 91精品久久久久久久久99蜜臂| 久久99久国产精品黄毛片色诱| 亚洲精品一区二区三区影院| 成人一区二区三区| 亚洲欧美成人一区二区三区| 欧美三日本三级三级在线播放| 午夜精品123| 中文字幕第一页久久| 欧美一a一片一级一片| 久久精品国产色蜜蜜麻豆| 亚洲国产精品黑人久久久| 欧美视频一区二区在线观看| 久久国产精品99久久人人澡| 国产精品久久久久久久久图文区| 欧美三级电影在线观看| 精品亚洲成av人在线观看| 国产精品嫩草影院com| 在线观看免费亚洲| 国产精品69毛片高清亚洲| 亚洲一区二区在线观看视频 | 国产精品资源在线看| 综合久久久久久久| 日韩色视频在线观看| 成人激情文学综合网| 五月天欧美精品| 国产精品免费看片| 日韩免费在线观看| 97se亚洲国产综合在线| 久久99久久精品| 亚洲一区日韩精品中文字幕| 欧美激情自拍偷拍| 3751色影院一区二区三区| 国产馆精品极品| 三级精品在线观看| 亚洲精品国产精华液| 久久久www成人免费毛片麻豆| 欧美日韩国产影片| 99视频精品在线| 国产乱码精品一品二品| 青青草97国产精品免费观看无弹窗版| 亚洲欧洲日产国码二区| 国产香蕉久久精品综合网| 91麻豆精品国产无毒不卡在线观看| 91香蕉国产在线观看软件| 国产精品影视在线观看| 黄色资源网久久资源365| 日韩高清不卡一区| 亚洲1区2区3区4区| 亚洲小少妇裸体bbw| 一个色在线综合| 亚洲卡通欧美制服中文| 亚洲欧洲三级电影| 最新中文字幕一区二区三区| 不卡视频免费播放| 粉嫩一区二区三区在线看| 国产高清精品久久久久| 国产精品亚洲第一| 激情综合亚洲精品| 黄一区二区三区| 国产成人自拍网| aaa亚洲精品| 一本到不卡免费一区二区|