日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代做Lab 2: Time Series Prediction with GP

時(shí)間:2024-03-21  來源:  作者: 我要糾錯(cuò)



Evolutionary Computation 2023/2024
Lab 2: Time Series Prediction with GP
Released: February 26, 2024
Deadline: March 18, 2024
Weight: 25 %
You need to implement one program that solves Exercises 1-3 using any programming language.
In Exercise 5, you will run a set of experiments and describe the result using plots and a short
discussion.
(In the following, replace abc123 with your username.) You need to submit one zip file
with the name ec2024-lab2-abc123.zip. The zip file should contain one directory named
ec2024-lab2-abc123 containing the following files:
• the source code for your program
• a Dockerfile (see the appendix for instructions)
• a PDF file for Exercises 4 and 5
In this lab, we will do a simple form of time series prediction. We assume that we are given some
historical data, (e.g. bitcoin prices for each day over a year), and need to predict the next value in
the time series (e.g., tomorrow’s bitcoin value).
1
We formulate the problem as a regression problem. The training data consists of a set of m
input vectors X = (x
(0), . . . , x(m−1)) representing historical data, and a set of m output values
Y = (x
(0), . . . , x(m−1)), where for each 0 ≤ j ≤ m − 1, x
(j) ∈ R
n and y
(j) ∈ R. We will use genetic
programming to evolve a prediction model f : R
n → R, such that f(x
(j)
) ≈ y
(j)
.
Candidate solutions, i.e. programs, will be represented as expressions, where each expression evaluates to a value, which is considered the output of the program. When evaluating an expression,
we assume that we are given a current input vector x = (x0, . . . , xn−1) ∈ R
n. Expressions and evaluations are defined recursively. Any floating number is an expression which evaluates to the value
of the number. If e1, e2, e3, and e4 are expressions which evaluate to v1, v2, v3 and v4 respectively,
then the following are also expressions
• (add e1 e2) is addition which evaluates to v1 + v2, e.g. (add 1 2)≡ 3
• (sub e1 e2) is subtraction which evaluates to v1 − v2, e.g. (sub 2 1)≡ 1
• (mul e1 e2) is multiplication which evaluates to v1v2, e.g. (mul 2 1)≡ 2
• (div e1 e2) is division which evaluates to v1/v2 if v2 ̸= 0 and 0 otherwise, e.g., (div 4 2)≡ 2,
and (div 4 0)≡ 0,
• (pow e1 e2) is power which evaluates to v
v2
1
, e.g., (pow 2 3)≡ 8
• (sqrt e1) is the square root which evaluates to √
v1, e.g.(sqrt 4)≡ 2
• (log e1) is the logarithm base 2 which evaluates to log(v1), e.g. (log 8)≡ 3
• (exp e1) is the exponential function which evaluates to e
v1
, e.g. (exp 2)≡ e
2 ≈ 7.39
• (max e1 e2) is the maximum which evaluates to max(v1, v2), e.g., (max 1 2)≡ 2
• (ifleq e1 e2 e3 e4) is a branching statement which evaluates to v3 if v1 ≤ v2, otherwise the
expression evaluates to v4 e.g. (ifleq 1 2 3 4)≡ 3 and (ifleq 2 1 3 4)≡ 4
• (data e1) is the j-th element xj of the input, where j ≡ |⌊v1⌋| mod n.
• (diff e1 e2) is the difference xk − xℓ where k ≡ |⌊v1⌋| mod n and ℓ ≡ |⌊v2⌋| mod n
• (avg e1 e2) is the average 1
|k−ℓ|
Pmax(k,ℓ)−1
t=min(k,ℓ)
xt where k ≡ |⌊v1⌋| mod n and ℓ ≡ |⌊v2⌋|
mod n
In all cases where the mathematical value of an expression is undefined or not a real number (e.g.,

−1, 1/0 or (avg 1 1)), the expression should evaluate to 0.
We can build large expressions from the recursive definitions. For example, the expression
(add (mul 2 3) (log 4))
evaluates to
2 · 3 + log(4) = 6 + 2 = 8.
2
To evaluate the fitness of an expression e on a training data (X , Y) of size m, we use the mean
square error
f(e) = 1
m
mX−1
j=0

y
(j) − e(x
(j)
)
2
,
where e(x
(j)
) is the value of the expression e when evaluated on the input vector x
(j)
.
3
Exercise 1. (30 % of the marks)
Implement a routine to parse and evaluate expressions. You can assume that the input describes a
syntactically correct expression. Hint: Make use of a library for parsing s-expressions1
, and ensure
that you evaluate expressions exactly as specified on page 2.
Input arguments:
• -expr an expression
• -n the dimension of the input vector n
• -x the input vector
• -question the question number (always 1 in this case)
Output:
• the value of the expression
Example: In this example, we assume that your program has been compiled to an executable with
the name my lab solution.
[pkl@phi ocamlec]$ my_lab_solution -question 1 -n 1 -x "1.0"
-expr "(mul (add 1 2) (log 8))"
9.0
[pkl@phi ocamlec]$ my_lab_solution -question 1 -n 2 -x "1.0 2.0"
-expr "(max (data 0) (data 1))"
2.0
Exercise 2. (10 % of the marks) Implement a routine which computes the fitness of an expression
given a training data set.
Input arguments:
• -expr an expression
• -n the dimension of the input vector
• -m the size of the training data (X , Y)
• -data the name of a file containing the training data in the form of m lines, where each line
contains n + 1 values separated by tab characters. The first n elements in a line represents
an input vector x, and the last element in a line represents the output value y.
• -question the question number (always 2 in this case)
1See e.g. implementations here http://rosettacode.org/wiki/S-Expressions
4
Output:
• The fitness of the expression, given the data.
Exercise 3. (30 % of the marks)
Design a genetic programming algorithm to do time series forecasting. You can use any genetic
operators and selection mechanism you find suitable.
Input arguments:
• -lambda population size
• -n the dimension of the input vector
• -m the size of the training data (X , Y)
• -data the name of a file containing training data in the form of m lines, where each line
contains n + 1 values separated by tab characters. The first n elements in a line represents
an input vector x, and the last element in a line represents the output value y.
• -time budget the number of seconds to run the algorithm
• -question the question number (always 3 in this case)
Output:
• The fittest expression found within the time budget.
Exercise 4. (10 % of the marks) Here, you should do one of the following exercises.
If you follow LH Evolutionary Computation, do the following exercise: Describe your
algorithm from Exercise 3 in the form of pseudo-code. The pseudo-code should be sufficiently detailed
to allow an exact re-implementation.
If you follow LM Evolutionary Computation (extended), do the following exercise:
Describe in 150 words or less the result in one recent research paper on the topic “symbolic regression
using genetic programming”. The paper needs to be published in 2020 or later in the proceedings of
one of the following conferences: GECCO, PPSN, CEC, or FOGA.
5
Exercise 5. (20 % of the marks)
In this final task, you should try to determine parameter settings for your algorithm which lead to
as fit expressions as possible.
Your algorithm is likely to have several parameters, such as the population size, mutation rates,
selection mechanism, and other mechanisms components, such as diversity mechanisms.
Choose parameters which you think are essential for the behaviour of your algorithm. Run a set of
experiments to determine the impact of these parameters on the solution quality. For each parameter
setting, run 100 repetitions, and plot box plots of the fittest solution found within the time budget.
6
A. Docker Howto
Follow these steps exactly to build, test, save, and submit your Docker image. Please replace abc123
in the text below with your username.
1. Install Docker CE on your machine from the following website:
https://www.docker.com/community-edition
2. Copy the PDF file from Exercises 4 and 5 all required source files, and/or bytecode to an
empty directory named ec2024-lab2-abc123 (where you replace abc123 with your username).
mkdir ec2024 - lab2 - abc123
cd ec2024 - lab2 - abc123 /
cp ../ exercise . pdf .
cp ../ abc123 . py .
3. Create a text file Dockerfile file in the same directory, following the instructions below.
# Do not change the following line . It specifies the base image which
# will be downloaded when you build your image .
FROM pklehre / ec2024 - lab2
# Add all the files you need for your submission into the Docker image ,
# e . g . source code , Java bytecode , etc . In this example , we assume your
# program is the Python code in the file abc123 . py . For simplicity , we
# copy the file to the / bin directory in the Docker image . You can add
# multiple files if needed .
ADD abc123 . py / bin
# Install all the software required to run your code . The Docker image
# is derived from the Debian Linux distribution . You therefore need to
# use the apt - get package manager to install software . You can install
# e . g . java , python , ghc or whatever you need . You can also
# compile your code if needed .
# Note that Java and Python are already installed in the base image .
# RUN apt - get update
# RUN apt - get -y install python - numpy
# The final line specifies your username and how to start your program .
# Replace abc123 with your real username and python / bin / abc123 . py
# with what is required to start your program .
CMD [" - username " , " abc123 " , " - submission " , " python / bin / abc123 . py "]
7
4. Build the Docker image as shown below. The base image pklehre/ec2024-lab2 will be
downloaded from Docker Hub
docker build . -t ec2024 - lab2 - abc123
5. Run the docker image to test that your program starts. A battery of test cases will be executed
to check your solution.
docker run ec2024 - lab2 - abc123
6. Once you are happy with your solution, compress the directory containing the Dockerfile as
a zip-file. The directory should contain the source code, the Dockerfile, and the PDF file
for Exercise 4 and 5. The name of the zip-file should be ec2024-lab2-abc123.zip (again,
replace the abc123 with your username).
Following the example above, the directory structure contained in the zip file should be as
follows:
ec2024-lab2-abc123/exercise.pdf
ec2024-lab2-abc123/abc123.py
ec2024-lab2-abc123/Dockerfile
Submissions which do not adhere to this directory structure will be rejected!
7. Submit the zip file ec2024-lab2-abc123.zip on Canvas.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫CSIE3310、代做c++/Python編程
  • 下一篇:AIST1110代做、Python編程設(shè)計(jì)代寫
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗(yàn)證碼平臺(tái) 理財(cái) WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        亚洲一二三区视频在线观看| 久久精品国产色蜜蜜麻豆| 亚洲综合清纯丝袜自拍| 视频一区二区三区中文字幕| 精品制服美女丁香| 色婷婷综合中文久久一本| 精品国产百合女同互慰| 亚洲另类在线制服丝袜| 麻豆精品在线视频| 在线一区二区三区四区| 久久综合给合久久狠狠狠97色69| 成人欧美一区二区三区视频网页 | 国产精品18久久久久久久网站| 91网站在线播放| 久久久久久久综合狠狠综合| 亚洲五月六月丁香激情| 成人性生交大合| 日韩视频免费观看高清完整版| 国产精品久久二区二区| 国产在线一区观看| 欧美日韩国产免费一区二区| 亚洲天堂久久久久久久| 国产精品99久久久| 欧美成人a视频| 日本sm残虐另类| 欧美午夜精品久久久久久超碰| 国产精品久久久久7777按摩| 国产乱码字幕精品高清av| 欧美一区二区三区精品| 亚洲一区二区成人在线观看| 一本色道久久综合狠狠躁的推荐| 久久亚洲精精品中文字幕早川悠里| 日韩高清在线不卡| 欧美精品在线视频| 亚洲高清不卡在线观看| 在线视频观看一区| 亚洲国产毛片aaaaa无费看| 91麻豆精品在线观看| 国产精品美女久久久久aⅴ| 国产伦精品一区二区三区免费| 精品国产91久久久久久久妲己| 午夜免费欧美电影| 欧美午夜精品久久久久久超碰| 亚洲一二三四在线观看| 欧美日韩中文国产| 午夜不卡在线视频| 91精品国产综合久久精品app| 日韩影院在线观看| 日韩欧美资源站| 狠狠狠色丁香婷婷综合久久五月| 精品日韩av一区二区| 激情丁香综合五月| 国产欧美日韩一区二区三区在线观看| 国产999精品久久久久久绿帽| 中文字幕欧美国产| 91麻豆免费看片| 午夜视黄欧洲亚洲| 久久久久亚洲综合| 成人综合在线视频| 亚洲国产精品久久不卡毛片 | 成人高清在线视频| 亚洲精品一卡二卡| 欧美精品在线一区二区| 国产一区二区毛片| 国产精品国产三级国产aⅴ中文 | 亚洲成人免费影院| 精品久久久影院| 国产1区2区3区精品美女| 亚洲视频狠狠干| 欧美日韩激情一区二区三区| 久久97超碰国产精品超碰| 欧美激情一区在线| 欧美日韩卡一卡二| 国产精品影音先锋| 亚洲伊人色欲综合网| 精品剧情在线观看| 色综合天天综合网天天看片| 美女诱惑一区二区| 国产精品天美传媒| 欧美一级精品大片| 成人免费av在线| 日本视频在线一区| 亚洲人成电影网站色mp4| 日韩视频免费观看高清完整版| aa级大片欧美| 久久激情五月婷婷| 亚洲精品国产一区二区精华液 | 欧美视频一区二区三区四区| 国产一区二区三区在线观看精品 | 精品视频在线看| 不卡欧美aaaaa| 日韩二区在线观看| 国产精品美女一区二区| 日韩午夜在线播放| 91福利在线观看| www..com久久爱| 国产一区二区不卡| 裸体健美xxxx欧美裸体表演| 一区二区视频在线看| 久久久av毛片精品| 日韩午夜激情av| 欧美日韩高清在线播放| 91免费版在线| av一本久道久久综合久久鬼色| 久久99久久久久| 日韩vs国产vs欧美| 天堂av在线一区| 亚洲午夜激情av| 一区二区三区四区不卡在线| 国产精品美女久久久久aⅴ| 中文字幕不卡在线| 久久久久国产免费免费| 1000精品久久久久久久久| 26uuu精品一区二区三区四区在线| 欧美伊人久久大香线蕉综合69| aaa国产一区| 亚洲一区电影777| 在线电影一区二区三区| 色噜噜夜夜夜综合网| 国产精品伊人色| 欧美aa在线视频| 精品一区免费av| 日韩综合一区二区| 亚洲一区二区中文在线| 亚洲欧美色一区| 国产性天天综合网| 亚洲国产成人午夜在线一区 | 一区二区三国产精华液| 国产精品久久久久久久久快鸭| 日韩欧美国产一区二区在线播放 | 日韩精品亚洲专区| 国产精品水嫩水嫩| 欧美国产日韩亚洲一区| 亚洲精品一区二区在线观看| 日韩一区二区免费在线观看| 91久久精品一区二区三区| 99精品视频在线观看| 国产不卡高清在线观看视频| 国产美女一区二区三区| 国产专区欧美精品| 国产另类ts人妖一区二区| 国产精品1区2区3区| 91猫先生在线| 在线精品视频小说1| 欧美三区在线观看| 欧美优质美女网站| 91久久精品一区二区三区| 51精品秘密在线观看| 精品区一区二区| 欧美国产精品劲爆| 国产精品国产a| 亚洲成av人片在线观看无码| 婷婷久久综合九色综合伊人色| 天堂影院一区二区| 日韩影院在线观看| 韩国一区二区视频| 国产精品亚洲第一| 国产传媒久久文化传媒| 麻豆精品国产91久久久久久| 国产一区二区三区在线观看免费视频 | 日韩一级欧美一级| 国产欧美一区二区精品性色超碰 | 欧美三级欧美一级| 91精品国产入口在线| 欧美成人官网二区| 欧美激情一区二区三区蜜桃视频 | 亚洲少妇中出一区| 日韩综合小视频| 国产精品一区在线观看乱码| 国产99久久久久| 欧美一级免费观看| 国产精品久久久久久久久搜平片 | 国产一区二区三区久久久| 成人黄色在线视频| 欧美精品三级在线观看| 久久综合久久综合久久综合| 一区二区三区毛片| 极品少妇xxxx偷拍精品少妇| 99re这里都是精品| 欧美一卡2卡3卡4卡| 国产欧美一区二区精品性| 美女免费视频一区| 91丨九色丨蝌蚪富婆spa| 欧美一级搡bbbb搡bbbb| 亚洲你懂的在线视频| 国产精品中文字幕一区二区三区| 91黄色免费网站| 国产日韩欧美在线一区| 亚洲香蕉伊在人在线观| 国产麻豆欧美日韩一区| 日韩欧美一级在线播放| 亚洲成人免费观看| 不卡av在线免费观看| 日韩欧美激情四射| 美女尤物国产一区| 欧美午夜精品一区| 亚洲青青青在线视频| 国产成人亚洲综合a∨猫咪| 久久久综合视频| 老色鬼精品视频在线观看播放|