日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

JC3509編程代做、代寫Python程序設(shè)計

時間:2024-03-31  來源:  作者: 我要糾錯



page 1 of 3
 University of Aberdeen
 South China Normal University
 Aberdeen Institute of Data Science
 & Artificial Intelligence.
 BSc in Artificial Intelligence 2023 – 2024
**Please read all the information below carefully**
Assessment I Briefing Document – Individually Assessed (no teamwork)
Course: JC3509 – Machine Learning Note: This part of assessment accounts for
30% of your total mark of the course.
Learning Outcomes
On successful completion of this component a student will have demonstrated competence in the
following areas:
• Ability to identify, prepare, & manage appropriate datasets for analysis.
• Ability to appropriately present the results of data analysis.
• Ability to analyse the results of data analyses, and to evaluate the performance of analytic
techniques in context.
• Knowledge and understanding of analytic techniques, and ability to appropriately apply
them in context, making correct judgements about how this needs to be done.
Information for Plagiarism and Conduct: Your submitted report may be submitted for
plagiarism check (e.g., Turnitin). Please refer to the slides available at MyAberdeen for more
information about avoiding plagiarism before you start working on the assessment. Please also read
the following information provided by the university: https://www.abdn.ac.uk/sls/onlineresources/avoiding-plagiarism/
In addition, please familiarise yourselves with the following document “code of practice on student
discipline (Academic)”: https://tinyurl.com/y92xgkq6
Report Guidance & Requirements
Your report must conform to the below structure and include the required content as outlined in each
section. Each subtask has its own marks allocated. You must supply a written report, along with the
corresponding code, containing all distinct sections/subtasks that provide a full critical and reflective
account of the processes undertaken.
Overview
This assignment tasks you to undertake the full machine learning pipeline, including data handling
and processing, model construction and training, and evaluation of the developed methods. You are
tasked to create a neural network to classify data into 3 categories.
page 2 of 3
**Please read all the information below carefully**
The dataset needed to fulfil the requirements of this assessment can be found in MyAberdeen.
Data:
This data contains the chemical properties of food product produced by 3 different manufacturers.
The purpose of this experiment is to explore the relationship between the chemical measures listed
below and the manufacturer of the food product. The data has 177 records, where the first column
“Producer” indicates which manufacturer produced the analyses sample. The features of the dataset
are the following:
• Producer – Manufacturer of the product (TARGET).
• Amino_acid – The total percentage content of animo acid.
• Malic_acid – The percentage content of malic acid.
• Ash – The measure of ash present in the product.
• Alc – The alcalinity of ash present.
• Mg – The measure of magnesium.
• Phenols – The total measure of phenols.
• Flavanoids – The measure of flavonoid phenols in the product.
• Nonflavanoid_phenols – The measure of non-flavonoid phenols in the product.
• Proanth – Proanthocyanins measure.
• Colo_int – The color intensity.
• Hue – Hue of the color.
• OD – The protein content of the product.
• Proline – The measure of proline amino acids.
Objectives:
The main purpose of employing this data is the following:
1. Classification: to determine the origin (manufacturer) of the product given analytical
measurements.
2. Analysis: to infer which analytical factors would potentially influence the classification of
the product.
In order to achieve these objectives, we would like to accomplish the following subtasks using
machine learning.
Submission
Please provide the follow:
1. A written report explaining the steps undertaken for each task, and the decisions behind each
choice. You are expected to use machine learning principles to explain your results with
graphs and/or tables.
2. A code submission, comprising of ONE commented python file with all code needed to
replicate the findings in the written report.
page 3 of 3
**Please read all the information below carefully**
Task 1 – Data Preparation (10 Marks)
Subtasks:
1. Import the dataset: Please provide a short description of the data provided and import the data
into your programming environment; provide snippets of code for these purposes.
2. Preprocess the data: If you did any preprocessing over the data, e.g., normalization, please
explain it and the reasons why you did that preprocessing; if you did not do any preprocessing,
also please explain.
Task 2 – Model Construction (50 Marks)
You are tasked to build simple fully connected artificial neural network from scratch to classify the
records into 3 categories (1, 2, or 3).
You are not permitted to use any machine learning or statistical libraries, you are expected to
construct the neural network from scratch, i.e. only using core Python and NumPy.
Subtasks:
1. Loss function: Select and implement an appropriate loss function, explain why you have
selected that loss function in relation to the data and the problem.
2. Network Design: Construct a fully connected neural network with at least one hidden layer.
Explain your architectural choice and demonstrate by code snippets, tests, and written
explanation that your code operates as expected. To achieve this, you will need to implement
both:
a. The Forward Pass.
b. The Backward Pass.
3. Gradient Descent: Update the weights by mini-batch stochastic gradient descent.
Demonstrate by code snippets, tests, and written explanation that the weights are being
updated. You can use advanced optimisation tricks if you wish i.e. momentum.
NOTE: If you are unable to complete the above tasks, you are permitted to use additional libraries
(i.e. PyTorch) however, this will result in a deduction of 20 marks.
Task 3 – Model Training (15 Marks)
Take the model from the previous task and train it on the data you pre-processed in Task 1. Ensure
that you train your model on a sub-set of the data, holding out a subset for validation.
Subtasks:
1. Model Training: Perform training and parameter selection on the training set.
2. Module Regularisation: Implement a regularisation method, briefly explain (Max 200 words)
how it works in the context of your code, use code snippets to help.
3. Model inference: Validate the model by performing inference on the held-out validation data.
page 4 of 3
**Please read all the information below carefully**
Task 4 – Evaluation (25 Marks)
Evaluate the performance of your trained classifier and employ machine learning principles to
explain your results with graphs and/or tables. In addition, perform some analyses on the trained
model to better understand which analytical factors would potentially influence the classification of
the product.
Subtasks:
1. Present Results: Present the results of your classifier via appropriate metrics for the problem
statement.
2. Plot: Plot the loss curve for training and validation, answer the following questions:
a. What does your loss curve tell you?
b. Are you observing any overfitting or underfitting?
c. Does the addition of regularisation help?
3. Explain Results: Explain the results from the previous subtasks in context of the problem
statement/setting.
Marking Criteria
• Depth and breadth of knowledge.
• Technical details of formalisation, implementation and pseudo-code.
• Communication skills (clear, technical contents and sound reasoning)
• Structure of document.
Submission Instructions
You should submit a PDF version of your report and the accompanying code to the Codio
environment. For the deadline of this assessment, please check it on MyAberdeen. The name of the
PDF file should have the form “JC3509_Assessment1 _< your Surname>_<your first
name>_<Your Student ID>”. For instance, “JC3509_Assessment1_Smith_John_4568985.pdf”,
where 4568985 is your student ID.
Any questions pertaining to any aspects of this assessment, please address them to the course
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp








 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:CHC5223代寫、Java/c++編程設(shè)計代做
  • 下一篇:代寫CSci 4061、c/c++,Java程序代做
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區(qū)
    昆明西山國家級風景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網(wǎng)下載 歐冠直播 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        国产日韩精品一区二区三区| 日本成人超碰在线观看| 午夜影视日本亚洲欧洲精品| 日本伦理一区二区| 日韩—二三区免费观看av| 日韩一区二区精品| 不卡一区在线观看| 亚洲成人黄色小说| 欧美电影免费提供在线观看| 国产精品18久久久久久久久久久久| 国产亚洲精品bt天堂精选| 91九色02白丝porn| 国产一区二区三区在线观看精品 | 国产东北露脸精品视频| 亚洲人快播电影网| 欧美精品一区二区三区视频| 91色综合久久久久婷婷| 精品综合久久久久久8888| 亚洲色图19p| 国产三级一区二区三区| 欧美猛男男办公室激情| 91小视频在线免费看| 国产一区免费电影| 日韩av一区二区三区四区| 亚洲视频一区二区在线观看| 久久午夜老司机| 欧美电影在哪看比较好| 一本到一区二区三区| 成人午夜av在线| 极品少妇xxxx精品少妇| 日韩av不卡在线观看| 亚洲一区二区三区美女| 亚洲欧美日韩国产一区二区三区| 国产日韩欧美在线一区| 精品国产伦一区二区三区观看体验| 91久久线看在观草草青青| 成人综合激情网| 国产精品亚洲第一区在线暖暖韩国 | 91久久一区二区| 97精品久久久久中文字幕| 国产高清久久久| 国产一区二区按摩在线观看| 秋霞午夜鲁丝一区二区老狼| 天天av天天翘天天综合网| 亚洲动漫第一页| 午夜国产精品一区| 亚洲aⅴ怡春院| 日韩 欧美一区二区三区| 天天操天天色综合| 日本亚洲电影天堂| 免费成人在线观看| 六月丁香婷婷久久| 国产另类ts人妖一区二区| 狠狠狠色丁香婷婷综合激情 | 日韩主播视频在线| 青青草国产成人av片免费| 天天综合天天做天天综合| 日韩高清国产一区在线| 蜜臀91精品一区二区三区| 婷婷开心激情综合| 精品一区二区三区日韩| 国产精选一区二区三区| 成人黄色av网站在线| 一道本成人在线| 欧美日韩国产三级| 欧美一级久久久| 久久婷婷久久一区二区三区| 国产精品午夜在线| 一区二区视频在线| 午夜亚洲福利老司机| 国产真实精品久久二三区| 成人污污视频在线观看| 欧美丝袜自拍制服另类| 久久亚洲综合av| 亚洲欧美福利一区二区| 久久国内精品自在自线400部| 国产成人啪免费观看软件| 欧美性视频一区二区三区| 精品国产精品网麻豆系列| 国产精品视频你懂的| 亚洲一区二区中文在线| 另类人妖一区二区av| jlzzjlzz欧美大全| 欧美久久久一区| 精品久久一区二区| 中文字幕字幕中文在线中不卡视频| 亚洲五月六月丁香激情| 国产呦精品一区二区三区网站| 波多野结衣在线一区| 91豆麻精品91久久久久久| 日韩一区二区三区视频| 中文字幕一区二区在线观看| 爽好多水快深点欧美视频| av男人天堂一区| 欧美一二三区在线观看| 中文字幕一区二区三区四区| 日日夜夜精品视频免费| 成人永久aaa| 337p粉嫩大胆噜噜噜噜噜91av| 亚洲丝袜制服诱惑| 麻豆国产精品视频| 在线免费不卡视频| 国产精品欧美极品| 精品午夜久久福利影院| 91欧美一区二区| 日本一区二区视频在线观看| 视频一区中文字幕国产| 97久久超碰国产精品| 久久久久久毛片| 男人的天堂久久精品| 欧美色男人天堂| 亚洲三级在线免费观看| 国产一区二区看久久| 555夜色666亚洲国产免| 亚洲一区二区三区美女| 91丨九色丨黑人外教| 中文字幕精品一区二区精品绿巨人| 日韩中文字幕一区二区三区| 色呦呦网站一区| 中文字幕欧美一| 91丨porny丨最新| 综合久久国产九一剧情麻豆| 成人三级在线视频| 国产欧美一区二区三区鸳鸯浴| 精品一区二区三区久久| 日韩一区二区三区免费看| 麻豆高清免费国产一区| 欧美一区二区三区在线观看 | 亚洲综合色在线| 91亚洲精品久久久蜜桃| 亚洲视频资源在线| 91麻豆swag| 亚洲成人精品在线观看| 欧美日本在线播放| 视频一区视频二区中文| 欧美日韩国产另类一区| 天堂影院一区二区| 日韩一区二区三区高清免费看看| 九九九久久久精品| 久久久久高清精品| 国产精品一区二区无线| 国产亚洲欧美一级| 国产99久久精品| 国产精品久久久久久久第一福利 | 欧美日韩激情在线| 亚洲国产精品综合小说图片区| 欧美在线免费观看视频| 天天色 色综合| 国产女人水真多18毛片18精品视频| 国产精品资源在线观看| 亚洲欧洲日本在线| 欧美日韩一区二区在线观看视频 | 亚洲mv在线观看| 日韩一区二区麻豆国产| 国产成人综合在线| 午夜精品一区二区三区三上悠亚| 日韩亚洲欧美高清| 国产成人久久精品77777最新版本| 中文字幕免费一区| 欧美色网站导航| 久久国产精品色婷婷| 国产精品成人一区二区艾草| 制服.丝袜.亚洲.另类.中文| 风间由美一区二区av101 | 欧美日韩mp4| 精品一区二区三区在线观看国产| 欧美激情综合五月色丁香| 色呦呦网站一区| 国产成人一区在线| 天天综合日日夜夜精品| 久久综合网色—综合色88| 色综合久久中文字幕| 蜜臀av国产精品久久久久| 国产午夜精品在线观看| 欧美无砖专区一中文字| 国产精品一区二区无线| 一片黄亚洲嫩模| 日本一区二区三区电影| 色综合久久综合中文综合网| 99精品欧美一区二区三区综合在线| 国产一区二三区| 亚洲成av人片一区二区梦乃| 国产精品久久久久久亚洲毛片| 91精品国产综合久久久久久久 | 国产成人在线色| 九九九精品视频| 日精品一区二区三区| 亚洲欧美韩国综合色| 国产亚洲短视频| 91精品国产综合久久婷婷香蕉| 色欧美日韩亚洲| 91免费精品国自产拍在线不卡| 精品一区中文字幕| 日韩经典中文字幕一区| 亚洲三级在线免费| 精品久久久久久亚洲综合网| 日韩一级二级三级精品视频| 欧美三级午夜理伦三级中视频| 国产69精品一区二区亚洲孕妇| 久久精品国产99|