日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

CISC3025代寫、代做c++,Java程序設(shè)計(jì)

時(shí)間:2024-04-03  來源:  作者: 我要糾錯(cuò)



University of Macau
CISC3025 - Natural Language Processing
Project#3, 2023/2024
(Due date: 18th April)
Person Name ('Named Entity') Recognition
This is a group project with two students at most. You need to enroll in a group here. In this project,
you will be building a maximum entropy model (MEM) for identifying person names in newswire
texts (Label=PERSON or Label=O). We have provided all of the machinery for training and testing
your MEM, but we have left the feature set woefully inadequate. Your job is to modify the code
for generating features so that it produces a much more sensible, complete, and higher-performing
set of features.
NOTE: In this project, we expect you to design a web application for demonstrating your final
model. You need to design a web page that provides at least such a simple function: 1) User inputs
sentence; 2) Output the named entity recognition results. Of course, more functionalities in your
web application are highly encouraged. For example, you can integrate the previous project’s work,
i.e., text classification, into your project (It would be very cool!).
You NEED to submit:
• Runnable program
o You need to implement a Named Entity Recognition model based on the given starter
codes
• Model file
o Once you have finished the designing of your features and made it functions well, it
will dump a model file (‘model.pkl’) automatically. We will use it to evaluate
your model.
• Web application
o You also need to develop a web application (freestyle, no restriction on programming
languages) to demonstrate your NER model or even more NLP functions.
o Obviously, you need to learn how to call your python project when building the web
application.
• Report
o You should finish a report to introduce your work on this project. Your report should
contain the following content:
§ Introduction;
§ Description of the methods, implementation, and additional consideration to
optimize your model;
§ Evaluations and discussions about your findings;
2
§ Conclusion and future work suggestions.
• Presentation
o You need to give a 8-minute presentation in the class to introduce your work followed
by a 3-minute Q&A section. The content of the presentation may refer to the report.
Starter Code
In the starter code, we have provided you with three simple starter features, but you should be able
to improve substantially on them. We recommend experimenting with orthographic information,
gazetteers, and the surrounding words, and we also encourage you to think beyond these
suggestions.
The file you will be modifying is MEM.py
Adding Features to the Code
You will create the features for the word at the given position, with the given previous label. You
may condition on any word in the sequence (and its relative position), not just the current word
because they are all observed. You may not condition on any labels other than the previous one.
You need to give a unique name for each feature. The system will use this unique name in training
to set the weight for that feature. At the testing time, the system will use the name of this feature
and its weight to make a classification decision.
Types of features to include
Your features should not just be the words themselves. The features can represent any property of
the word, context, or additional knowledge.
For example, the case of a word is a good predictor for a person's name, so you might want to add
a feature to capture whether a given word was lowercase, Titlecase, CamelCase, ALLCAP, etc.
def features(self, words, previous_label, position):
 features = {}
 """ Baseline Features """
 current_word = words[position]
 features['has_(%s)' % current_word] = 1
 features['prev_label'] = previous_label
 if current_word[0].isupper():
 features['Titlecase'] = 1
 #===== TODO: Add your features here =======#
 #...
 #=============== TODO: Done ================#
 return features
3
Imagine you saw the word “Jenny”. In addition to the feature for the word itself (as above), you
could add a feature to indicate it was in Title case, like:
You might encounter an unknown word in the test set, but if you know it begins with a capital letter
then this might be evidence that helps with the correct prediction.
Choosing the correct features is an important part of natural language processing. It is as much art
as science: some trial and error is inevitable, but you should see your accuracy increasing as you
add new types of features.
The name of a feature is not different from an ID number. You can use assign any name for a
feature as long as it is unique. For example, you can use “case=Title” instead of “Titlecase”.
Running the Program
We have provided you with a training set and a development set. We will be running your programs
on an unseen test set, so you should try to make your features as general as possible. Your goal
should be to increase F1 on the dev set, which is the harmonic mean of the precision and the recall.
You can use three different command flags (‘-t’, ‘-d’, ‘-s’) to train, test, and show respectively.
These flags can be used independently or jointly. If you run the program as it is, you should see the
following training process:
Afterward, it can print out your score on the dev set.
You can also give it an additional flag, -s, and have it show verbose sample results. The first column
is the word, the last two columns are your program's prediction of the word’s probability to be
$ python run.py -d
Testing classifier...
f_score = 0.8715
accuracy = 0.9641
recall = 0.7143
precision = 0.9642
if current_word[0].isupper():
features['Titlecase'] = 1
$ cd NER
$ python run.py -t
Training classifier...
 ==> Training (5 iterations)
 Iteration Log-Likelihood Accuracy
 ---------------------------------------
 1 -0.69315 0.055
 2 -0.09383 0.946
 3 -0.08134 0.968
 4 -0.07136 0.969
 Final -0.06330 0.969
4
PERSON or O. The star ‘*’ indicates the gold result. This should help you do error analysis and
properly target your features.
Where to make your changes?
1. Function ‘features()’ in MEM.py
2. You can modify the “Customization” part in run.py in order to debug more efficiently and
properly. It should be noted that your final submitted model should be trained under at least 20
iterations.
3. You may need to add a function “predict_sentence( )” in class MEM( ) to output predictions
and integrate with your web applications.
Changes beyond these, if you choose to make any, should be done with caution.
Grading
The assignment will be graded based on your codes, reports, and most importantly final
presentation.
$ python run.py -s
 Words P(PERSON) P(O)
----------------------------------------
 EU 0.0544 *0.9456
 rejects 0.0286 *0.9714
 German 0.0544 *0.9456
 call 0.0286 *0.9714
 to 0.0284 *0.9716
 boycott 0.0286 *0.9714
 British 0.0544 *0.9456
 lamb 0.0286 *0.9714
 . 0.0281 *0.9719
 Peter *0.4059 0.5941
 Blackburn *0.5057 0.4943
 BRUSSELS 0.4977 *0.5023
 1996-08-22 0.0286 *0.9714
 The 0.0544 *0.9456
 European 0.0544 *0.9456
 Commission 0.0544 *0.9456
 said 0.0258 *0.9742
 on 0.0283 *0.9717
 Thursday 0.0544 *0.9456
 it 0.0286 *0.9714
#====== Customization ======
BETA = 0.5
MAX_ITER = 5 # max training iteration
BOUND = (0, 20) # the desired position bound of samples
#==========================
5
Tips
• Start early! This project may take longer than the previous assignments if you are aiming for
the perfect score.
• Generalize your features. For example, if you're adding the above "case=Title" feature, think
about whether there is any pattern that is not captured by the feature. Would the "case=Title"
feature capture "O'Gorman"?
• When you add a new feature, think about whether it would have a positive or negative weight
for PERSON and O tags (these are the only tags for this assignment).

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






















 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:COMP3334代做、代寫Python程序語言
  • 下一篇:代寫CSC 330、代做C/C++編程語言
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級(jí)風(fēng)景名勝區(qū)
    昆明西山國家級(jí)風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗(yàn)證碼平臺(tái) 理財(cái) WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        一区二区三区四区在线播放| 亚洲国产日韩av| 日韩女优制服丝袜电影| 色婷婷国产精品| 91在线高清观看| av中文一区二区三区| 国产91富婆露脸刺激对白| 久久精品国产亚洲a| 视频一区二区三区在线| 亚洲第一精品在线| 亚洲资源中文字幕| 亚洲综合另类小说| 亚洲一区二区高清| 亚洲一区二区视频在线观看| 亚洲免费观看高清完整版在线观看 | 看电影不卡的网站| 久久国产乱子精品免费女| 久久国产精品免费| 国产999精品久久久久久绿帽| 成人av免费网站| 91国在线观看| 欧美久久久久久久久中文字幕| 欧美色综合天天久久综合精品| 欧美日韩精品二区第二页| 欧美一级一区二区| 欧美经典一区二区| 亚洲黄色尤物视频| 久久国产综合精品| 国产激情一区二区三区四区 | 一二三四社区欧美黄| 日韩成人一级片| 国产一区在线看| 91蝌蚪porny| 欧美一级片在线| 亚洲国产精品传媒在线观看| 亚洲啪啪综合av一区二区三区| 亚洲午夜精品17c| 国产在线看一区| 在线看国产一区| 精品久久久久一区| 一区二区三区四区乱视频| 亚瑟在线精品视频| 福利电影一区二区三区| 欧美日韩色综合| 欧美经典一区二区三区| 午夜激情一区二区| 成人av午夜影院| 精品三级在线看| 亚洲精品一二三| 国产一区福利在线| 色菇凉天天综合网| 欧美成人一级视频| 一区二区三区中文在线观看| 国产精品亚洲人在线观看| 欧美日韩亚洲国产综合| 欧美三级日韩三级| 国产精品久久久久桃色tv| 蜜臀精品一区二区三区在线观看| aaa欧美色吧激情视频| 91精品国产黑色紧身裤美女| 亚洲欧美另类综合偷拍| 九色综合国产一区二区三区| 91精品国产综合久久久久久久| 亚洲欧洲精品一区二区三区 | 日本黄色一区二区| 久久综合九色综合97婷婷 | 制服丝袜日韩国产| 亚洲欧美日韩久久| 国产69精品久久久久毛片| 精品国产一区二区亚洲人成毛片| 亚洲综合色成人| 欧美在线制服丝袜| 一区二区三区日本| 日本电影欧美片| 亚洲综合色噜噜狠狠| 日本精品视频一区二区| 樱桃国产成人精品视频| 在线视频欧美区| 亚洲一级二级在线| 欧美视频一区二区在线观看| 亚洲综合图片区| 色婷婷激情久久| 午夜久久久影院| 69久久99精品久久久久婷婷| 肉肉av福利一精品导航| 欧美mv和日韩mv的网站| 国产成人8x视频一区二区| 久久久美女艺术照精彩视频福利播放| 黄网站免费久久| 久久久久久久久久久久久夜| 丰满亚洲少妇av| ●精品国产综合乱码久久久久| 成熟亚洲日本毛茸茸凸凹| 亚洲女子a中天字幕| 欧美三区在线观看| 老司机午夜精品| 国产色产综合产在线视频| 从欧美一区二区三区| 亚洲激情六月丁香| 91精品国产综合久久久久久 | 欧美色图免费看| 日本aⅴ精品一区二区三区| www国产精品av| 成人91在线观看| 天堂成人国产精品一区| 亚洲精品一区在线观看| 波多野结衣中文一区| 亚洲成人免费视| 久久蜜桃av一区精品变态类天堂| 暴力调教一区二区三区| 亚洲欧美日韩国产综合在线| 91精品国产色综合久久ai换脸| 国产自产v一区二区三区c| 中文字幕亚洲在| 日韩女优av电影在线观看| 成人精品国产福利| 秋霞电影网一区二区| 国产区在线观看成人精品| 欧美日韩在线播放三区四区| 国产在线观看一区二区| 亚洲国产精品自拍| 国产精品污污网站在线观看| 欧美日本在线观看| 成人黄色av电影| 精品一区二区三区av| 亚洲综合小说图片| 国产精品久久久久精k8| 日韩欧美区一区二| 欧美系列一区二区| a亚洲天堂av| 国产成人亚洲综合色影视| 亚洲福利视频三区| 亚洲人妖av一区二区| 久久精品一区二区三区四区| 欧美美女视频在线观看| 国产91在线看| 国产福利一区二区| 免费成人美女在线观看.| 亚洲午夜成aⅴ人片| 亚洲人成网站在线| 国产精品丝袜黑色高跟| 欧美精品一区二区久久婷婷| 91精品国产综合久久精品app| 色综合久久综合网欧美综合网| 成人aa视频在线观看| 国产在线播放一区三区四| 久久99精品国产.久久久久| 日韩和的一区二区| 日本一道高清亚洲日美韩| 亚洲综合偷拍欧美一区色| 亚洲色图一区二区| 国产精品乱人伦| 亚洲天堂网中文字| 亚洲欧美日韩精品久久久久| 综合电影一区二区三区| 亚洲欧美综合网| 亚洲欧美激情插| 亚洲综合男人的天堂| 亚洲成在人线在线播放| 香蕉成人啪国产精品视频综合网| 亚洲国产精品久久不卡毛片| 亚洲一二三区在线观看| 亚洲18影院在线观看| 秋霞成人午夜伦在线观看| 麻豆91精品视频| 国产在线播放一区三区四| 国产一区二区久久| 成人99免费视频| 91色在线porny| 欧美日韩精品三区| 欧美一区二区三区的| 精品国产一区二区三区久久久蜜月 | 99精品在线观看视频| 欧美午夜一区二区三区免费大片| 精品视频123区在线观看| 在线综合+亚洲+欧美中文字幕| 日韩精品在线一区| 久久精品欧美一区二区三区不卡| 国产精品网站在线观看| 亚洲大片在线观看| 国产成人亚洲综合a∨婷婷| 91网站最新网址| 欧美一区二区私人影院日本| 国产亚洲精品中文字幕| 亚洲视频一二区| 三级精品在线观看| 波波电影院一区二区三区| 欧美日韩免费在线视频| 国产喂奶挤奶一区二区三区| 亚洲欧美一区二区三区久本道91| 天涯成人国产亚洲精品一区av| 国内精品自线一区二区三区视频| 99国产精品久| 欧美r级电影在线观看| 中文字幕中文乱码欧美一区二区| 午夜a成v人精品| 成人av小说网| 精品99999| 天堂午夜影视日韩欧美一区二区| 国产成a人无v码亚洲福利|