日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

CISC3025代寫、代做c++,Java程序設計

時間:2024-04-03  來源:  作者: 我要糾錯



University of Macau
CISC3025 - Natural Language Processing
Project#3, 2023/2024
(Due date: 18th April)
Person Name ('Named Entity') Recognition
This is a group project with two students at most. You need to enroll in a group here. In this project,
you will be building a maximum entropy model (MEM) for identifying person names in newswire
texts (Label=PERSON or Label=O). We have provided all of the machinery for training and testing
your MEM, but we have left the feature set woefully inadequate. Your job is to modify the code
for generating features so that it produces a much more sensible, complete, and higher-performing
set of features.
NOTE: In this project, we expect you to design a web application for demonstrating your final
model. You need to design a web page that provides at least such a simple function: 1) User inputs
sentence; 2) Output the named entity recognition results. Of course, more functionalities in your
web application are highly encouraged. For example, you can integrate the previous project’s work,
i.e., text classification, into your project (It would be very cool!).
You NEED to submit:
• Runnable program
o You need to implement a Named Entity Recognition model based on the given starter
codes
• Model file
o Once you have finished the designing of your features and made it functions well, it
will dump a model file (‘model.pkl’) automatically. We will use it to evaluate
your model.
• Web application
o You also need to develop a web application (freestyle, no restriction on programming
languages) to demonstrate your NER model or even more NLP functions.
o Obviously, you need to learn how to call your python project when building the web
application.
• Report
o You should finish a report to introduce your work on this project. Your report should
contain the following content:
§ Introduction;
§ Description of the methods, implementation, and additional consideration to
optimize your model;
§ Evaluations and discussions about your findings;
2
§ Conclusion and future work suggestions.
• Presentation
o You need to give a 8-minute presentation in the class to introduce your work followed
by a 3-minute Q&A section. The content of the presentation may refer to the report.
Starter Code
In the starter code, we have provided you with three simple starter features, but you should be able
to improve substantially on them. We recommend experimenting with orthographic information,
gazetteers, and the surrounding words, and we also encourage you to think beyond these
suggestions.
The file you will be modifying is MEM.py
Adding Features to the Code
You will create the features for the word at the given position, with the given previous label. You
may condition on any word in the sequence (and its relative position), not just the current word
because they are all observed. You may not condition on any labels other than the previous one.
You need to give a unique name for each feature. The system will use this unique name in training
to set the weight for that feature. At the testing time, the system will use the name of this feature
and its weight to make a classification decision.
Types of features to include
Your features should not just be the words themselves. The features can represent any property of
the word, context, or additional knowledge.
For example, the case of a word is a good predictor for a person's name, so you might want to add
a feature to capture whether a given word was lowercase, Titlecase, CamelCase, ALLCAP, etc.
def features(self, words, previous_label, position):
 features = {}
 """ Baseline Features """
 current_word = words[position]
 features['has_(%s)' % current_word] = 1
 features['prev_label'] = previous_label
 if current_word[0].isupper():
 features['Titlecase'] = 1
 #===== TODO: Add your features here =======#
 #...
 #=============== TODO: Done ================#
 return features
3
Imagine you saw the word “Jenny”. In addition to the feature for the word itself (as above), you
could add a feature to indicate it was in Title case, like:
You might encounter an unknown word in the test set, but if you know it begins with a capital letter
then this might be evidence that helps with the correct prediction.
Choosing the correct features is an important part of natural language processing. It is as much art
as science: some trial and error is inevitable, but you should see your accuracy increasing as you
add new types of features.
The name of a feature is not different from an ID number. You can use assign any name for a
feature as long as it is unique. For example, you can use “case=Title” instead of “Titlecase”.
Running the Program
We have provided you with a training set and a development set. We will be running your programs
on an unseen test set, so you should try to make your features as general as possible. Your goal
should be to increase F1 on the dev set, which is the harmonic mean of the precision and the recall.
You can use three different command flags (‘-t’, ‘-d’, ‘-s’) to train, test, and show respectively.
These flags can be used independently or jointly. If you run the program as it is, you should see the
following training process:
Afterward, it can print out your score on the dev set.
You can also give it an additional flag, -s, and have it show verbose sample results. The first column
is the word, the last two columns are your program's prediction of the word’s probability to be
$ python run.py -d
Testing classifier...
f_score = 0.8715
accuracy = 0.9641
recall = 0.7143
precision = 0.9642
if current_word[0].isupper():
features['Titlecase'] = 1
$ cd NER
$ python run.py -t
Training classifier...
 ==> Training (5 iterations)
 Iteration Log-Likelihood Accuracy
 ---------------------------------------
 1 -0.69315 0.055
 2 -0.09383 0.946
 3 -0.08134 0.968
 4 -0.07136 0.969
 Final -0.06330 0.969
4
PERSON or O. The star ‘*’ indicates the gold result. This should help you do error analysis and
properly target your features.
Where to make your changes?
1. Function ‘features()’ in MEM.py
2. You can modify the “Customization” part in run.py in order to debug more efficiently and
properly. It should be noted that your final submitted model should be trained under at least 20
iterations.
3. You may need to add a function “predict_sentence( )” in class MEM( ) to output predictions
and integrate with your web applications.
Changes beyond these, if you choose to make any, should be done with caution.
Grading
The assignment will be graded based on your codes, reports, and most importantly final
presentation.
$ python run.py -s
 Words P(PERSON) P(O)
----------------------------------------
 EU 0.0544 *0.9456
 rejects 0.0286 *0.9714
 German 0.0544 *0.9456
 call 0.0286 *0.9714
 to 0.0284 *0.9716
 boycott 0.0286 *0.9714
 British 0.0544 *0.9456
 lamb 0.0286 *0.9714
 . 0.0281 *0.9719
 Peter *0.4059 0.5941
 Blackburn *0.5057 0.4943
 BRUSSELS 0.4977 *0.5023
 1996-08-22 0.0286 *0.9714
 The 0.0544 *0.9456
 European 0.0544 *0.9456
 Commission 0.0544 *0.9456
 said 0.0258 *0.9742
 on 0.0283 *0.9717
 Thursday 0.0544 *0.9456
 it 0.0286 *0.9714
#====== Customization ======
BETA = 0.5
MAX_ITER = 5 # max training iteration
BOUND = (0, 20) # the desired position bound of samples
#==========================
5
Tips
• Start early! This project may take longer than the previous assignments if you are aiming for
the perfect score.
• Generalize your features. For example, if you're adding the above "case=Title" feature, think
about whether there is any pattern that is not captured by the feature. Would the "case=Title"
feature capture "O'Gorman"?
• When you add a new feature, think about whether it would have a positive or negative weight
for PERSON and O tags (these are the only tags for this assignment).

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:COMP3334代做、代寫Python程序語言
  • 下一篇:代寫CSC 330、代做C/C++編程語言
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              9000px;">

                        欧美亚洲国产一卡| 中文字幕一区二| 成人精品小蝌蚪| 日韩一区国产二区欧美三区| 青青草国产精品97视觉盛宴| 欧美老肥妇做.爰bbww| 日本视频中文字幕一区二区三区| 在线不卡中文字幕播放| 久久精品国产99久久6| 国产欧美精品国产国产专区 | 成人性生交大片免费| 国产精品日韩成人| 日本韩国欧美一区二区三区| 青青草国产精品亚洲专区无| 欧美激情综合五月色丁香小说| 成人美女在线视频| 亚洲一区二区三区四区在线| 国产成人99久久亚洲综合精品| 2017欧美狠狠色| 色猫猫国产区一区二在线视频| 日韩国产在线一| 欧美激情综合五月色丁香 | 91精品国产色综合久久不卡电影 | 中文字幕久久午夜不卡| 欧美午夜精品久久久久久超碰 | 国产精品久久久久久久久免费丝袜 | 亚洲一区影音先锋| 中文字幕的久久| 欧美精品视频www在线观看| 视频精品一区二区| 国产精品理论在线观看| 欧美一级夜夜爽| 一本一道久久a久久精品| 国产精品911| 亚洲国产精品久久久久婷婷884| 久久这里都是精品| 欧美色综合影院| 91看片淫黄大片一级在线观看| 久久国产精品72免费观看| 一区二区理论电影在线观看| 久久久久久99久久久精品网站| 欧美日韩精品一区二区三区四区 | 国产亚洲欧洲一区高清在线观看| 欧美影片第一页| 99久久久国产精品免费蜜臀| 视频一区免费在线观看| 亚洲精品精品亚洲| 一区二区三区国产精品| 亚洲欧美另类图片小说| 国产精品久久久久久久久久免费看| 精品动漫一区二区三区在线观看| 在线播放/欧美激情| 欧美日韩高清在线播放| 色婷婷一区二区三区四区| 91原创在线视频| 在线看日韩精品电影| 在线观看免费一区| 欧美精品1区2区3区| 日韩一区二区三区视频| 欧美一级黄色大片| 久久欧美一区二区| 国产日韩精品视频一区| 国产亚洲欧美一级| 国产精品久久久久久久午夜片| 国产精品欧美久久久久无广告 | 视频一区二区不卡| 亚洲国产va精品久久久不卡综合| 亚洲一区中文日韩| 日韩国产精品久久久| 欧美aaaaaa午夜精品| 久久精品国产精品亚洲红杏| 韩国毛片一区二区三区| 成人av午夜影院| 欧美体内she精视频| 欧美一二三区在线| 久久久欧美精品sm网站| 亚洲黄色免费电影| 日本午夜精品一区二区三区电影| 奇米亚洲午夜久久精品| 国产乱子伦视频一区二区三区 | 91免费观看视频| 欧美精品第1页| 91一区二区三区在线播放| 91精品国产一区二区| 日韩一卡二卡三卡国产欧美| 欧美成人伊人久久综合网| 国产精品视频观看| 亚洲一卡二卡三卡四卡五卡| 久久精品国产久精国产| 成人黄动漫网站免费app| 欧美怡红院视频| 精品少妇一区二区三区在线视频| 国产精品久久久久影院老司| 亚洲va欧美va人人爽| 美腿丝袜在线亚洲一区| 成人小视频免费在线观看| 717成人午夜免费福利电影| 久久综合久久综合九色| 亚洲成a人片综合在线| 麻豆久久一区二区| 一本一道久久a久久精品| 欧美一级国产精品| 亚洲国产裸拍裸体视频在线观看乱了 | 2019国产精品| 国产精品三级av| 麻豆国产精品官网| 色嗨嗨av一区二区三区| 精品国产91亚洲一区二区三区婷婷| 亚洲激情自拍视频| 国产成人在线电影| 日韩精品影音先锋| 夜夜揉揉日日人人青青一国产精品| 国产精品69久久久久水密桃| 日本韩国精品在线| 中文字幕精品三区| 国产成人精品影视| 久久精品视频网| 寂寞少妇一区二区三区| 欧美精品在线一区二区| 欧美激情一区在线观看| 捆绑变态av一区二区三区| 在线播放视频一区| 亚洲自拍偷拍麻豆| 91麻豆精品一区二区三区| 中文字幕中文字幕在线一区| 成人一道本在线| 国产精品第五页| 色乱码一区二区三区88| 亚洲国产wwwccc36天堂| 51精品国自产在线| 免费欧美在线视频| 国产在线视频精品一区| 日韩视频免费直播| 精品一区免费av| 久久久久久久久99精品| 国产成人在线网站| 2021国产精品久久精品| 粉嫩aⅴ一区二区三区四区 | 久久精品男人天堂av| 豆国产96在线|亚洲| 久久美女艺术照精彩视频福利播放| 亚洲尤物在线视频观看| 色偷偷久久一区二区三区| 一区av在线播放| 欧美少妇bbb| 日韩成人精品视频| 精品粉嫩超白一线天av| 成人性生交大片免费看中文网站| 久久综合成人精品亚洲另类欧美| 美女视频黄免费的久久 | 欧美精品一区二| 丰满少妇在线播放bd日韩电影| 久久女同精品一区二区| 91首页免费视频| 午夜精品久久久久久久久久久| 777午夜精品视频在线播放| 婷婷夜色潮精品综合在线| 欧美日韩国产综合一区二区 | 久久久午夜精品理论片中文字幕| 国产在线精品一区二区| 国产精品国产三级国产有无不卡| 成人av免费在线播放| 一区二区三区久久| 欧美肥妇free| 成人av在线观| 麻豆国产一区二区| 欧美国产97人人爽人人喊| 欧美午夜免费电影| 国产一区二区三区在线观看精品| 欧美激情中文不卡| 欧美精品日日鲁夜夜添| 国产精品一二三四| 亚洲柠檬福利资源导航| 精品国产在天天线2019| 色综合天天综合在线视频| 五月激情丁香一区二区三区| 日韩一区二区在线观看视频| 韩国精品一区二区| 亚洲国产美国国产综合一区二区| 精品国产乱码久久久久久闺蜜| 成人sese在线| 丝袜美腿亚洲一区二区图片| 日韩欧美中文字幕制服| av在线这里只有精品| 亚洲成人综合视频| 一区二区三区四区五区视频在线观看| 精品对白一区国产伦| 欧美一区二区视频在线观看2022| 色成人在线视频| 91在线视频观看| 成人免费观看视频| 精品中文字幕一区二区小辣椒| 婷婷中文字幕综合| 亚洲福利电影网| 亚洲一二三专区| 亚洲电影第三页| 香蕉加勒比综合久久| 亚洲成人免费在线| 亚洲国产视频a| 午夜av一区二区|