代寫 CS6114 Coding Video for Streaming

            時間:2024-04-14  來源:  作者: 我要糾錯



             Assignment 02: Coding Video for Streaming
            The adaptive bit-rate (ABR) streaming mechanism is used in most modern streaming protocols, such as HLS and MPEG DASH. In ABR streaming, the content is encoded at several bitrate representations. Each representation incorporates a set of defined switching points, such as MPEG GOPs with an IDR-picture. During the playback, the streaming client monitors the rate of the incoming data. If the rate becomes insufficient for continuous playback, the client may switch to a lower bitrate representation to prevent buffering. However, if the rate is greater than bitrate of the current representation, the client may switch to a higher bitrate, which will probably increase the quality of video. If the client makes perfect decisions throughout the playback, then the quality of the delivered content is maximised for the client networking environment.
            The representations used for ABR streaming can differ in bitrate, resolution and CODEC configuration. These choices are called an encoding ladder. Often encoding ladders are designed to be used for all content (mostly video-picture content), client devices, and delivery networks. However, these universal ladder designs are sub-optimal, as rate-distortion characteristics vary for different types of content (e.g. high motion and low motion content) and network bandwidth for different technologies (e.g. wired, wireless) has very different characteristics.
            MPEG-DASH
            MPEG-DASH partitions each representation of the content into short, fixed duration segments. These representations are time-aligned so that while the content is being played back by an MPEG-DASH client, the client can use a bitrate adaptation (ABR) algorithm to select the next segment of the representation that has the highest bitrate (quality) that can be downloaded in time for playback without causing stalls or buffering.
            The process of selecting of the next representation makes a prediction about the network conditions that will exist during the transfer of the next segment. To select an appropriate representation the client uses a manifest file, which describes each segment of each representation.
            <Representation id="1" width="960" height="540" bandwidth="2200000" codecs="avc1.640029">...
            <Representation id="2" width="1280" height="720" bandwidth="3299968" codecs="avc1.640029">...
            <Representation id="3" width="640" height="360" bandwidth="800000" codecs="avc1.4D401E">...
            If the predictions are to be successful, each segment of each representations must not exceed (or significantly fall short of) the advertised bitrate for its representation. To achieve this objective the encoder must employ constrained bitrate encoding techniques.
            Rate Control
            Rate control is the process used by the encoder in deciding how to allocate bits to encode each picture. The goal of (lossy) video coding is to reduce the bitrate while retaining as much quality as possible. Rate control is a crucial step in determining the tradeoff between size and quality.
            CBR and VBR encoding sets a target data rate and a bitrate control technique is applied by the encoding application to achieve the target bitrate. It can be difficult to choose an appropriate data rate for constrained connections and the quality of experience (QoE) for viewers can be impacted if the range of VBR is too high or in the case of CBR, if the nature of the content varies greatly. Often constrained VBR between 110%-150% is used, however this assumes a target bitrate to achieve an acceptable level of quality is known before the content is encoded.
            Not all video content is equally compressible. Low motion and smooth gradients compress well (few bits for high perceived quality) , whereas high motion and fine spatial detail are less compressible (more bits to
            CS6114 Assignment

             CS6114 Assignment
            preserve quality). Often it is easier to specify a target quality and let the encoder vary the data rate to achieve this target. However, the data rate required to achieve the target quality is unknown in advance.
            Constant Rate Factor (CRF) encoding specifies a quality level and the encoding application adjusts the data rate to achieve the target quality. The result is content with a fixed quality level, but the data rate is unknown in advance. If quality is the objective this is not a concern, but if the data rate varies significantly over the duration of the content, it may have implications for the deliverability.
            Capped CRF applies the data rate necessary to achieve a target quality, together with a maximum data rate to ensure deliverability.
            Encoding Ladders
            Originally ABR streaming used a fixed encoding ladder that was either agnostic of the video content (Apple), or based on encoding ladders that worked best across a catalogue of content (Netflix). An advance on this approach is to create an encoding ladder that depends on the content type (e.g. the per-title encoding by Netflix). For an encoding ladder to be optimally designed it must model the rate distortion characteristics of the source (content-aware), and model the delivery network and client switching- algorithm (context-aware).
            In this assignment only content-aware factors will be considered. For video on demand applications a model of quality for each representation (bitrate) can be created for an encoder (e.g. libx264) by encoding source content using a range of bitrates, and measuring the overall quality using an objective quality metric (e.g. PSNR). This results in pairs of values (Ri, Qi), i = 1, 2, ... where Ri denotes bitrate and Qi denotes quality.
            Some encoding ladder design considerations include
            • Good quality representations with reasonable bitrates
            • Quality and bitrate increments between consecutive representations • Segment duration (coding efficiency versus adaptability)
            • Network limits (maximum bitrates on different platforms)
            Encoding Ladder for the Assignment
            In this assignment the resolution (size and frame rate) of the content is fixed1. Creating a content-aware encoding ladder raises several questions that must be addressed in the assignment.
            • The number of representations is finite, so how many representations are sufficient (and practical to implement)?
            • What is the increase in bitrate between adjacent representations? Is this a fixed increment (e.g. 5% greater each time), or quality based (what difference is noticeable)? Are these bitrate increases equally spaced?
            In this assignment the optimality criteria to consider are
            • Each bitrate-resolution entry in the encoding ladder should, for the given bitrate, have as high a
            quality as possible
            • Adjacent bitrates should be perceptually spaced. Careful choice of the quality improvements
            between representations can result in smooth quality transitions when switching. But this must be balanced against the practical concern of too many representations.
             1 So you do not need to consider the difference between scaling artefacts and encoding artefacts.

             CS6114 Assignment
            A video encoder can be configured in many ways, such as different GOP (Group of Pictures) structures, different quantisation parameters (QP) or bit allocations. Depending on the encoder and the configuration the same source video can be compressed differently, each having its own bitrate and distortion value. To determine the list of representations to use in the encoding ladder the Bjøntegaard Delta-Rate (BD Rate) metric can be used to select the encoder configuration.
            Bjøntegaard Delta-Rate
            A CODEC quality comparison experiment consists of a series of encoding and quality metric calculations on different parameters giving points on a bitrate-quality graph. These measured points are used to create rate-distortion curves, as it is impractical to generate all of the points on the curve. For better visibility in rate-distortion plots, the discrete points are interpolated to give a continuous curve. The Bjøntegaard- Delta (BD) metric reduces the performance comparison to a single numerical value. The BD metric calculates the average difference between two curves by interpolating the measured points of two CODECs or CODEC features/settings.
            The BD-rate is calculated on rate-distortion curves using the following procedure.
            • Four different rate points or target qualities are chosen for the input sequence
            • For these four points, contents is encoded with two different CODECs or CODEC configurations
            • The measured bitrate and the measured distortion (e.g. PSNR) for the resulting eight encodings
            are used to create rate distortion curves
            • To ensure that mean BD-rate values are not biased towards higher bitrates a logarithmic scale is
            used for the measured bitrates
            The BD-Rate calculates the average difference between two rate distortion curves, by estimating the area between the two curves. The BD-Rate allows the measurement of the bitrate reduction offered by a CODEC or CODEC feature/setting while maintaining the same quality as measured by the objective metric.
             https://github.com/FAU-LMS/bjontegaard

             Task
            In the assignment you will design an encoding ladder for some example content. To identify the most suitable entries in the encoding ladder you will use the information you learned from You will use the information from applying the Bjøntegaard-Delta (BD) metric.
            In the assignment you will use two GoP structures as the different configurations of a CODEC to compare
            • GoP length 100, number of B-pictures 3
            • GoP length 250, number of B-pictures 3
            You will need to
            • Decide the values of the four rate points or target qualities – use a defined CRF value appropriate for low bitrate, medium, good and excellent quality content
            • Encode the content using these CRF values and measure the bitrate and quality, giving a total of 8 encodings
            • Calculate the BD-Rate and BD-PSNR using the bjontegaard Python package, this will identify the difference, if any, between these configurations
            • Create the rate distortion curve (quality versus bitrate) for the selected CODEC configuration
            • Choose an appropriate number of bitrates from the curve that capture low, medium and high
            quality encodings – these are the entries in the encoding ladder
            • Encode the content using capped CRF encoding
            There is no requirement to create an MPEG-DASH manifest file.
            Create a Jupyter notebook that implements this workflow. Write a short report (2 pages) that interprets your results, justifies your choices and includes any observations or improvements you noted or implemented.
            Resources
            There are test video sequence. The supplied Jupyter notebook (A02) gives an example of creating the encoding structure, and extracting the data for use with the bjontegaard Python package.
            References
            G. Bjøntegaard, “Calculation of average PSNR differences between RD curves,” document, VCEG-M33, Austin, TX, USA, Apr. 2001.
            A. V. Katsenou, J. Sole and D. R. Bull, "Efficient Bitrate Ladder Construction for Content-Optimized Adaptive Video Streaming," in IEEE Open Journal of Signal Processing, vol. 2, pp. 496-511, 2021, doi: 10.1109/OJSP.2021.3086691.
            Valery Zimichev , BD-rate: one name - two metrics. AOM vs. the World. https://vicuesoft.com/blog/titles/bd_rate_one_name_two_metrics/
            CS6114 Assignment

            請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp









             

            標簽:

            掃一掃在手機打開當前頁
          1. 上一篇:COMP 2049 代做代寫 c++,java 編程
          2. 下一篇:代做COMP9024、代寫C++設計編程
          3. 無相關信息
            昆明生活資訊

            昆明圖文信息
            蝴蝶泉(4A)-大理旅游
            蝴蝶泉(4A)-大理旅游
            油炸竹蟲
            油炸竹蟲
            酸筍煮魚(雞)
            酸筍煮魚(雞)
            竹筒飯
            竹筒飯
            香茅草烤魚
            香茅草烤魚
            檸檬烤魚
            檸檬烤魚
            昆明西山國家級風景名勝區
            昆明西山國家級風景名勝區
            昆明旅游索道攻略
            昆明旅游索道攻略
          4. 高仿包包訂製 幣安官網下載

            關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

            Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
            ICP備06013414號-3 公安備 42010502001045

            主站蜘蛛池模板: 日韩免费无码一区二区三区| 亚洲AV日韩精品一区二区三区| 日亚毛片免费乱码不卡一区| 精品福利一区二区三| 亚洲av日韩综合一区久热| 日韩人妻不卡一区二区三区 | 日韩人妻无码一区二区三区久久99| 精品女同一区二区三区免费站| 好爽毛片一区二区三区四| 国产成人一区二区三区精品久久| 99精品国产高清一区二区| 久久国产一区二区| 精品国产一区二区三区久久| 亚洲国产成人久久一区WWW| 国产一区二区三区免费看| 成人毛片无码一区二区| 亚洲欧美国产国产一区二区三区| 国产91精品一区二区麻豆网站| 国产美女精品一区二区三区| 97精品国产福利一区二区三区| 免费国产在线精品一区| 亚洲av午夜精品一区二区三区| 一区二区三区杨幂在线观看| 国产激情无码一区二区三区| 精品一区二区无码AV| 日韩人妻无码一区二区三区综合部| 国产一区二区三区在线视頻| 中文字幕亚洲一区二区va在线| 国产亚洲一区二区三区在线不卡| 久久国产午夜精品一区二区三区| 国产伦一区二区三区高清| 中文字幕一区二区三区乱码| 久久亚洲综合色一区二区三区| 亚洲国产精品一区第二页| 一区二区在线电影| 亚洲AV无码片一区二区三区| 日本v片免费一区二区三区| chinese国产一区二区| 国内国外日产一区二区| 乱子伦一区二区三区| 亚洲高清一区二区三区电影|