日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

CAN202代寫、代做MATLAB編程設(shè)計(jì)

時(shí)間:2024-04-26  來(lái)源:  作者: 我要糾錯(cuò)



Page 1 of 3
CAN202 Analogue and Digital Communications I Coursework AY202324
Instructions:
1. 100 marks are available from this coursework (20% towards the total mark of CAN202)
2. Please submit one PDF file that contains your answers and CORRECT student ID.
3. Release date of the coursework: Friday 5
th April 2024.
4. Due date of the coursework: 23:59, Monday 6
th May 2024.
5. There are 11 questions in total. Answer ALL questions.
6. If asked, support your answer with figures. Make sure the figures are READABLE.
7. Append all necessary codes at the end of the to-be-submitted PDF or at the
corresponding answers.
8. No generative AI may be used when completing the coursework.
9. Learning outcome accessed: A, B, E.
10. The usual late-submission policy may apply (e.g., 5 marks deduction per working day).
The questions begin:
Figure 1 shows a periodic triangular wave 𝑠(𝑡), where the period is 𝑇 seconds.
Figure 1 A periodic triangular wave
Q1 Show sufficient steps to verify that a Fourier series representation of 𝑠(𝑡) in Figure 1 is
𝑠(𝑡) = ∑ 𝐶𝑛𝑒
𝑗2𝜋𝑛𝑡
𝑇

𝑛=−∞
,
where 𝐶0 = 0 and 𝐶𝑛 =
2𝐴(𝑒
−𝑗𝜋𝑛−1)
𝜋2𝑛2
. (Hint: It may be easier to find the Fourier series
representation of 𝑑𝑠(𝑡)
𝑑𝑡
= ∑ 𝐵𝑛𝑒
𝑗2𝜋𝑛𝑡
∞ 𝑇 𝑛=−∞ and then find 𝐶𝑛 =
𝑇
𝑗2𝜋𝑛
𝐵𝑛 , where the latter
comes from a property of Fourier series that links the Fourier series coefficients
between a periodic signal and its integration) (10 marks)
Q2 Rewrite the Fourier series of 𝑠(𝑡) in the following form, i.e.,
𝑠(𝑡) = ∑ 𝐷𝑛 cos (
2𝜋𝑛𝑡
𝑇
+ 𝜃𝑛) ,

𝑛=0
where you need to determine 𝐷𝑛 and 𝜃𝑛. (5 marks)
Then, suppose there is a bandlimited modulating signal 𝑚(𝑡) whose bandwidth is 0.2
𝑇
Hz.
Plot the frequency spectrum of 𝑚(𝑡)𝑠(𝑡). You may assume that the frequency spectrum
of 𝑚(𝑡) has the shape in Figure 2. (10 marks)
Page 2 of 3
Figure 2 An illustration of the frequency spectrum of 𝑚(𝑡)
Q3 We can generate a double-sideband suppressed carrier amplitude modulated (DSB-SC
AM) signal based on 𝑚(𝑡) × 𝑠(𝑡) and an appropriate bandpass filter (BPF), where the
carrier frequency is 𝑇
−1 Hz. Draw a diagram that realizes such a DSB-SC AM scheme,
where the functions of all components in the diagram must be specified. (5 marks)
In the second part of the assignment, we will scramble the frequency components of a piece
of soundtrack that somehow disguise the sound, and then we descramble and restore the
soundtrack. We will use the soundtrack in “handel.mat”. By typing the command “load
handel” in MATLAB, you will find two variables in the workspace, i.e., “y” and “Fs”, where
“y” contains samples of the soundtrack and “Fs” specifies the sampling frequency in Hz that
gives rise to the samples in “y”. We may treat “Fs/2” as the bandwidth of the soundtrack.
After loading “handel”, we may play the soundtrack using the following command:
“player = audioplayer(y, Fs); play(player);”
If your loudspeaker works, you should hear “hallelujah, hallelujah, …”.
Figure 3 shows a simple scrambler that scrambles the frequency spectrum of “y” and give
rise to “z”. Figure 4 shows a descrambler that would, ideally, restore the frequency
spectrum of “y” from “z”.
Figure 3 A scrambler
Figure 4 A descrambler for the scrambler in Figure 3
Q4 In Figure 3, assume 𝑦(𝑡) is bandlimited to Fs/2 Hz. Sketch the frequency spectrum of
𝑧(𝑡). (10 marks)
Q5 Show with illustrating figures that the system in Figure 4 can restore 𝑦(𝑡) from 𝑧(𝑡).
(10 marks)
Page 3 of 3
We can demonstrate the above in MATLAB, where we will scramble “y” and descramble “z”.
Specifically, we calculate the discrete Fourier transform (DFT) of various discrete-time
signals in the above scrambler/descrambler system and observe the frequency spectra. We
will also play the soundtrack of 𝑧(𝑡) in Figure 3 and 𝑦(𝑡) in Figure 4 for verification. The DFT
can be calculated using the “fft” function in MATLAB.
The “fft(y)” returns frequency domain samples from frequency zero to Fs − 𝑇0
−1
, where Fs is
the sampling frequency of “y” and 𝑇0 is the duration of the time-domain signal. Because the
DFT samples are periodic, one may use the command “fftshift( fft( y ) )” to swap the two
halves of “fft(y)”, such that the zero-frequency component appears at the center of the
vector returned by “fftshift( fft( y ) )”.
One thing to note is that the DFT calculation is related to the sampling frequency. In Figure
3, we need to multiply 𝑦(𝑡) with a carrier signal that has a frequency of Fs, and the resulting
signal 𝑦1(𝑡) would have the largest bandwidth (counting from frequency zero) among all
signals in the systems of Figures 3 and 4. To use DFT correctly for 𝑦1(𝑡), we need to have a
sampling frequency that is at least twice as much as the bandwidth of 𝑦1(𝑡) (again, counting
from frequency zero). However, the soundtrack from “handel” is not sampled at a
sufficiently high frequency, so we need to upsample the soundtrack first. The upsampling
can be done using the command “resample(y, Fs_new,Fs)”, where Fs_new is the new
sampling frequency that is sufficiently large.
Please answer the following questions based on MATLAB programming.
Q6 Load “handel” in MATLAB and play the soundtrack. Calculate the DFT of the soundtrack
samples using “fft”. Then, plot the discrete frequency spectrum as calculated from the
DFT, where you should use the command “fftshift” to rearrange the results from “fft”.
Label the frequency values of the samples from the frequency spectrum. (5 marks)
Q7 Perform upsampling to the vector “y” from “handel”, where the new sampling
frequency is Fs × 2. Play the upsampled soundtrack and make sure that it sounds the
same as that in Q6. (5 marks)
Q8 Generate samples of 𝑦1(𝑡) (refer to Figure 3), where you may need to sample a correct
carrier signal with the correct sampling frequency. Plot the DFT of 𝑦1(𝑡) in MATLAB and
label the frequencies; explain whether this plot meets your expectation. (10 marks)
Q9 Perform lowpass filtering to the samples of 𝑦1(𝑡) and obtain samples of 𝑦2(𝑡). The
sampled impulse response of the lowpass filter may come from a truncated sinc pulse
that approximates an ideal lowpass filter with a bandwidth of Fs. You may then use
“conv” to perform convolution (or, equivalently, the filtering operation in the timedomain). Plot the DFT of 𝑦2(𝑡). (10 marks)
Q10 Following Figure 3, obtain samples of the scrambled soundtrack 𝑧(𝑡) in MATLAB.
Plot the DFT of 𝑧(𝑡) and play the time-domain samples. Comment on what you hear
from 𝑧(𝑡). (10 marks)
Q11 Following Figure 4, descramble 𝑧(𝑡) and obtain 𝑦′(𝑡). Plot the DFT of 𝑦′(𝑡) in
MATLAB. Also, play the samples of 𝑦′(𝑡). Comment your observations. (10 marks)
End of Coursework

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標(biāo)簽:

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:代做COMP3211、Python/Java程序代寫
  • 下一篇:CSC1002代做、Python設(shè)計(jì)程序代寫
  • 無(wú)相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
    昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗(yàn)證碼平臺(tái) 幣安官網(wǎng)下載 歐冠直播 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              欧美成人在线免费观看| 老鸭窝毛片一区二区三区| 国产精品久久久久影院色老大| 欧美一区二区三区婷婷月色| 亚洲黄色免费| 国产精品一区二区久久久| 免费久久久一本精品久久区| 亚洲男人的天堂在线| 亚洲精品无人区| 国产日韩精品久久久| 欧美日一区二区在线观看| 久久乐国产精品| 欧美亚洲色图校园春色| av成人动漫| 亚洲精品一区二区在线| 在线观看视频免费一区二区三区| 国产精品成人va在线观看| 麻豆视频一区二区| 久久精品二区亚洲w码| 亚洲一卡二卡三卡四卡五卡| 亚洲国产精品va| 1000部精品久久久久久久久| 国产日韩综合| 国产日韩欧美日韩大片| 国产欧美日韩精品丝袜高跟鞋| 欧美性猛交一区二区三区精品| 欧美成人69av| 欧美大片在线观看一区| 欧美mv日韩mv国产网站| 欧美激情欧美激情在线五月| 欧美韩日一区| 欧美绝品在线观看成人午夜影视| 欧美精品二区| 国产精品高潮呻吟久久av无限| 国产精品豆花视频| 国产精品视频精品| 国产亚洲综合精品| 影音先锋亚洲一区| 亚洲精品免费网站| 亚洲午夜精品福利| 欧美一区二区视频97| 欧美一区日本一区韩国一区| 欧美在线视频二区| 久久夜色精品国产欧美乱极品| 久久婷婷国产综合尤物精品| 老牛嫩草一区二区三区日本| 欧美二区不卡| 欧美色区777第一页| 国产日产欧产精品推荐色| 狠狠色丁香久久婷婷综合丁香| 永久免费精品影视网站| 艳妇臀荡乳欲伦亚洲一区| 亚洲你懂的在线视频| 午夜免费日韩视频| 久久精品视频在线播放| 欧美国产在线视频| 国产精品视频免费在线观看| 一区二区三区在线观看视频| 亚洲精品美女在线观看| 欧美一区三区三区高中清蜜桃| 老司机免费视频一区二区三区| 欧美久久一级| 韩曰欧美视频免费观看| 亚洲欧洲精品一区二区三区| 亚洲一区二区伦理| 欧美成人黄色小视频| 国产欧美精品在线观看| 日韩视频免费在线| 久久在线91| 国产欧美一区二区精品忘忧草| 亚洲欧洲一区| 久久免费99精品久久久久久| 国产精品jizz在线观看美国 | 久久成人18免费网站| 欧美刺激午夜性久久久久久久| 国产欧美日韩精品一区| av不卡在线看| 欧美aaaaaaaa牛牛影院| 国产一区二区三区免费不卡 | 亚洲欧美激情一区二区| 欧美成人午夜激情在线| 国产一区亚洲| 香蕉国产精品偷在线观看不卡 | 亚洲娇小video精品| 欧美一区亚洲| 国产精品看片资源| 亚洲一区二区三区精品在线观看| 免费成人av在线看| 国产日韩欧美亚洲一区| 亚洲天堂av高清| 欧美天天视频| 一级成人国产| 欧美日韩在线视频一区二区| 亚洲国内在线| 美女网站在线免费欧美精品| 国产在线视频欧美一区二区三区| 亚洲一区二区四区| 国产精品高清网站| 亚洲午夜久久久久久久久电影院| 欧美精品成人| 一区二区三区精品| 欧美日韩1区2区| 一区二区三区久久久| 欧美日韩视频不卡| 一区二区三区精品视频| 欧美色欧美亚洲另类七区| 在线综合亚洲欧美在线视频| 国产精品久久午夜| 午夜欧美精品| 国产一区视频在线看| 久久九九久精品国产免费直播| 国外成人在线| 欧美激情在线免费观看| 一区二区av在线| 国产精品视频在线观看| 欧美在线视频观看| 激情欧美一区| 欧美精品在线一区| 亚洲欧美日产图| 国产一区二区三区在线观看精品| 久久久精品欧美丰满| 亚洲成色www8888| 欧美精品91| 99亚洲精品| 国产欧美在线视频| 欧美成人国产一区二区| 一区二区三区精品视频| 国产精品视频成人| 浪潮色综合久久天堂| 99视频超级精品| 国产一区91| 欧美精品国产| 久久av一区二区三区亚洲| 亚洲激情校园春色| 国产精品视频午夜| 免费成人在线观看视频| 亚洲一区二区四区| 91久久精品美女| 国产亚洲欧美日韩在线一区 | 久久一区中文字幕| 亚洲一区二区视频在线| 亚洲国产美女| 国产精品亚洲产品| 欧美精品久久久久久久| 欧美在线观看视频在线| 日韩亚洲不卡在线| 尤物网精品视频| 国产农村妇女精品| 欧美日韩日日夜夜| 欧美精品97| 久久综合九色| 久久九九免费| 先锋影音国产一区| 一区二区三区 在线观看视| 精品av久久久久电影| 国产亚洲午夜| 国产美女精品| 欧美午夜美女看片| 欧美日韩成人综合| 欧美sm视频| 另类欧美日韩国产在线| 欧美一区免费| 午夜精品久久久久久99热| 一卡二卡3卡四卡高清精品视频| 亚洲国产天堂网精品网站| 国产一区二区三区久久悠悠色av| 国产精品vvv| 久久综合国产精品| 欧美区一区二区三区| 欧美成人精品影院| 久久久久女教师免费一区| 久久大综合网| 久久免费偷拍视频| 久久婷婷av| 欧美成在线观看| 欧美国产精品久久| 欧美另类高清视频在线| 欧美女同视频| 欧美日韩一区二区在线播放| 欧美日韩中文另类| 国产精品家庭影院| 国产欧美日本| 一区二区亚洲精品| 亚洲精品一区中文| 亚洲免费电影在线| 亚洲影视在线播放| 欧美伊久线香蕉线新在线| 久久精品理论片| 免费美女久久99| 欧美精品免费播放| 欧美日韩一区二区在线观看| 国产精品va在线| 国产女主播视频一区二区| 永久域名在线精品| 一区二区三区国产盗摄| 午夜精品久久久久久久白皮肤 | 欧美性色aⅴ视频一区日韩精品| 国产日韩一区欧美| 日韩视频免费观看高清在线视频 | 国产有码在线一区二区视频|