日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

代做MATH1033、代寫c/c++,Java程序語言

時間:2024-05-11  來源:  作者: 我要糾錯



The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
SPRING SEMESTER 2023-2024
MATH1033 - STATISTICS
Your neat, clearly-legible solutions should be submitted electronically via the MATH1033 Moodle page by
18:00 on Wednesday 8th May 2024. Since this work is assessed, your submission must be entirely your
own work (see the University’s policy on Academic Misconduct). Submissions made more than one week
after the deadline date will receive a mark of zero. Please try to make your submission by the deadline.
General points about the coursework
1. Please use R Markdown to produce your report.
2. An R Markdown template file to get you started is available to download from Moodle. Do make use of
this, besides reading carefully the Hints and Tips section below.
3. Please submit your report a self-contained html file (i.e. as produced by R Markdown) or pdf.
4. If you have any queries about the coursework, please ask me by email (of course, please limit this to
requests for clarification; don’t ask for any of the solution nor post any of your own).
Your task
The data file scottishData.csv contains a sample of the ”Indicator” data that were used to compute the 2020
Scottish Index of Multiple Deprivation (SIMD), a tool used by government bodies to support policy-making. If
you are interested, you can see the SIMD and find out more about it here: https://simd.scot
Once you have downloaded the csv file, and once you’ve set the RStudio working directory to wherever you
put the file, you can load the data with dat <- read.csv(”scottishData.csv”) The file contains data for a sample
of 400 ”data zones” within Scotland. Data zones are small geographical areas in Scotland, of which there
are 6,976 in total, with each typically containing a population of between 500 and 1000 people. Of the 400
observations within the data file, 100 are from the Glasgow City, 100 are from City of Edinburgh, and 200
are from elsewhere in Scotland. Glasgow and Edinburgh are the two largest cities in Scotland by population.
Table 1 shows a description of the different variables within the data set.
Your report should have the following section headings: Summary, Introduction, Methods, Results, Conclusions.
For detailed guidance, read carefully section page 4 of the notes, and the ”How will the report be marked?”
section below.
The Results section of your report should include subsections per points 1-3 as follows. The bullet points
indicate what should be included within these subsections, along with suitable brief commentary.
MATH1033 Turn Over
2 MATH1010
1. A comparison of employment rate between Glasgow and Edinburgh.
• A single plot with side-by-side boxplots for the Employment_rate variable for each of
Glasgow and Edinburgh.
• A histogram of the Employment_rate variable with accompanying normal QQ plot, for
each of Glasgow and Edinburgh.
• Sample means and variances of the Employment_rate variable for the data zones in
each of Glasgow and Edinburgh.
• Test of whether there is a difference in variability of Employment_rate scores between
Glasgow and Edinburgh.
• Test of whether there is a difference in means of Employment_rate scores between
Glasgow and Edinburgh.
2. Investigation into how Employment_rate and other variables are associated.
• A matrix of pairwise scatterplots for the following variables: Employment_rate,
Attainment, Attendance, ALCOHOL, and Broadband. Also present pairwise correlation
coefficients between these variables.
• A regression of Employment_rate on Attendance, including a scatterplot showing a line
of best fit.
3. A further investigation into a respect of your choosing.
• It’s up to you what you choose here. Possible things you could consider are: considering
an analysis similar to 1 above, but involving the data on data zones outside of Glasgow
and Edinburgh; considering whether what you find in investigations in 2 above are
similar if you consider whether the data zones are from Glasgow, Edinburgh or elsewhere;
investigating the other variables in the data set besides these in 1 and 2.
• Note that some variables will be very strongly correlated, but with fairly obvious/boring
explanation: for example “rate” variables (see Table 1) are just “count” variables
divided by population size, and data zones are designed to have similar population
sizes.
• Think freely and creatively about what is interesting to investigate, especially how you
could make good use of the methods that you are learning in the module.
Please include as an appendix the R code to produce the results in your report, but don’t include
R code or unformatted text/numerical output in the main part of the report itself.
Hints and tips:
1. Use the template .Rmd file provided on Moodle as your starting point.
2. Read carefully “How will the report be marked?” below. Then re-read it again once again
just before you submit to make sure you have everything in place.
3. You may find the subset command useful. Some examples:
• glasgow <- subset(dat, Council_area == "Glasgow City") defines a new variable containing
data only for Glasgow.
• subset(dat, (Council_area != "City of Edinburgh" & Council_area != "Glasgow City"))
finds the data zones that are not in either Edinburgh or Glasgow.
4. The command names(dat) will tell you the names of the variables (columns) in dat.
5. dat(,c(16,17,18)) will pick out just the 16th, 17th, 18th column (for example).
MATH1010
[ ]
m
( ]
⑧m
3 MATH1010
6. The pairs() function produces a matrix of pairwise scatterplots. cor() computes pairwise
correlation coefficients.
7. Do make sure that figures have clear titles, axis labels, etc
MATH1010 Turn Over
.
4 MATH1010
How will the report be marked?
The marking criteria and approximate mark allocation are as follows:
Summary [4 marks] - have you explained (in non-technical language) (a) the aim of the analysis;
(b) (very briefly) the methods you have used; and (c) the key findings?
Introduction [5] - have you (a) explained the context, talked in a bit more detail about the aim;
(b) given some relevant background information; (c) described the available data; (d) explained
why the study is useful/important?
Methods [3] - have you described the statistical techniques you have used (in at least enough
detail that a fellow statistician can understand what you have done)?
Results [14, of which 7 are for the investigation of your choosing mentioned in point 3 above] -
have you presented suitable graphical/numerical summaries, tests and results, and interspersed
these with text giving explanation?
Conclusions [4] - have you (a) recapped your key findings, (b) discussed any limitations, and
(c) suggested possible further extensions of the work?
Presentation [10] - overall, does the report flow nicely, is the writing clear, and is the presentation
tidy (figures/tables well labelled and captioned)? Has Markdown been used well?
MATH1010
5 MATH1010
Table 1: A description of the different variables. “Standardised ratio” is such that a value of 100
is the Scotland average for a population with the same age and sex profile.
MATH1010 End

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:COMP2017代寫、代做Python/Java程序
  • 下一篇:CMT219代寫、代做Java程序語言
  • 代做CSCI 2525、c/c++,Java程序語言代寫
  • COMP 315代寫、Java程序語言代做
  • 昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本欧洲视频一区_国模极品一区二区三区_国产熟女一区二区三区五月婷_亚洲AV成人精品日韩一区18p

              国产精品成人一区二区三区夜夜夜| 亚洲综合日韩中文字幕v在线| 免费成人小视频| 亚洲一区二区三区精品视频 | 精品1区2区| 国产精品美女诱惑| 欧美高清视频免费观看| 久久精品国产v日韩v亚洲| 亚洲精品孕妇| 91久久在线视频| 国产一区二区三区av电影| 国产精品www994| 欧美日韩亚洲一区二区三区| 毛片基地黄久久久久久天堂| 欧美一级理论性理论a| 一区二区三区免费在线观看| 91久久久久久久久| 亚洲国产成人在线| 一区二区三区在线视频免费观看| 国产嫩草影院久久久久| 国产精品久久久久毛片大屁完整版| 欧美大尺度在线观看| 你懂的国产精品永久在线| 久久免费99精品久久久久久| 久久久精品五月天| 久久久综合网| 久久噜噜噜精品国产亚洲综合| 久久久久久久国产| 久久这里有精品视频| 老司机一区二区三区| 女仆av观看一区| 欧美激情在线观看| 欧美视频精品一区| 国产精品一区二区久久久久| 国产精品网站视频| 国产一区99| 在线观看中文字幕亚洲| 亚洲成色777777在线观看影院| 亚洲国产一二三| av成人免费在线| 亚洲欧美日韩综合| 久久精品国产亚洲5555| 久久亚洲精品视频| 欧美国产亚洲另类动漫| 欧美日韩精品综合| 国产精品综合| 亚洲激情校园春色| 亚洲影院免费观看| 久久视频在线看| 欧美日韩人人澡狠狠躁视频| 国产欧美日本| 亚洲激情av| 亚洲综合社区| 麻豆精品国产91久久久久久| 欧美日韩国产一级| 国产一区二区三区电影在线观看| 亚洲国产高清在线| 亚洲深夜av| 久久香蕉国产线看观看网| 欧美人与性动交a欧美精品| 国产精品影院在线观看| 亚洲二区在线视频| 亚洲永久精品大片| 欧美另类专区| 国内外成人在线| 亚洲线精品一区二区三区八戒| 久久久青草婷婷精品综合日韩| 欧美日韩亚洲三区| 在线免费观看日本欧美| 亚洲小说欧美另类婷婷| 欧美成人69| 伊人伊人伊人久久| 午夜久久久久久久久久一区二区| 欧美护士18xxxxhd| 一区二区在线观看av| 午夜精品久久久久久久久久久久| 欧美成在线观看| 激情久久综艺| 久久精品在线| 国产一二精品视频| 亚洲综合视频一区| 欧美日韩免费网站| 日韩午夜黄色| 欧美精品一区二区三区在线看午夜 | 久久久免费精品| 国产一区二区久久精品| 亚洲视频在线视频| 欧美日韩在线精品| 一区二区三区你懂的| 欧美精品一区二区三区很污很色的| 在线观看福利一区| 麻豆乱码国产一区二区三区| 韩国v欧美v日本v亚洲v| 欧美主播一区二区三区美女 久久精品人 | 亚洲乱码日产精品bd| 欧美极品影院| 夜夜夜精品看看| 国产精品v欧美精品v日本精品动漫 | 亚洲一区二区三区成人在线视频精品| 欧美精品一卡| 亚洲亚洲精品三区日韩精品在线视频 | 亚洲一区二区免费看| 欧美性淫爽ww久久久久无| 亚洲午夜电影网| 国产精品一区二区三区成人| 亚洲一区二区毛片| 国产日韩欧美一区二区| 久久成人资源| 亚洲日韩欧美视频| 欧美日韩美女一区二区| 亚洲午夜精品久久久久久浪潮 | 欧美体内谢she精2性欧美| 亚洲一区国产精品| 韩国欧美国产1区| 免费日韩av片| 亚洲一区二区av电影| 国产精品看片你懂得| 久久精品麻豆| 99视频有精品| 国产情侣久久| 欧美v亚洲v综合ⅴ国产v| 99国内精品久久| 国产有码在线一区二区视频| 美女主播一区| 亚洲视频电影图片偷拍一区| 国产在线欧美日韩| 欧美精品激情在线观看| 亚洲专区免费| 亚洲国产日韩欧美| 国产精品网曝门| 欧美成黄导航| 久久精品视频在线| 亚洲视频视频在线| 国产在线乱码一区二区三区| 欧美日韩国产综合视频在线观看中文| 午夜精品免费视频| 亚洲黄色成人| 国内综合精品午夜久久资源| 欧美日韩综合在线| 欧美国产高清| 久久精品99国产精品酒店日本| 亚洲精选大片| 好看的av在线不卡观看| 国产精品日韩久久久| 欧美日韩高清在线一区| 久久亚洲免费| 欧美在线不卡视频| 亚洲一区高清| 这里只有精品在线播放| 亚洲国产视频一区二区| 国内精品嫩模av私拍在线观看| 国产精品卡一卡二卡三| 欧美精品少妇一区二区三区| 免费成人av在线| 免费欧美日韩国产三级电影| 久久精品最新地址| 久久都是精品| 久久国产免费看| 久久se精品一区二区| 欧美在线www| 欧美综合第一页| 久久av一区二区三区漫画| 亚洲欧美视频一区| 亚洲欧美日韩国产综合| 中文网丁香综合网| 亚洲性视频网站| 亚洲午夜一区二区| 亚洲欧美春色| 性做久久久久久| 久久精品国产免费| 久久亚洲综合色一区二区三区| 久久久久久久久久久成人| 久久久久久免费| 美日韩精品免费观看视频| 美女91精品| 欧美成人一区二区三区| 蜜臀91精品一区二区三区| 牛夜精品久久久久久久99黑人| 久久精品欧洲| 欧美超级免费视 在线| 欧美激情综合亚洲一二区| 欧美日韩一区二区三区四区五区 | 亚洲综合不卡| 久久精品视频在线看| 久热精品视频在线观看一区| 欧美高清在线视频观看不卡| 欧美精品乱人伦久久久久久 | 国产精品人人做人人爽人人添| 国产精品乱码妇女bbbb| 国产综合久久| 亚洲精品国久久99热| 亚洲女同精品视频| 久久婷婷国产综合精品青草| 欧美大片免费| 国产精品呻吟| 亚洲欧洲在线一区| 亚洲欧洲av一区二区| 欧美国产免费| 国产亚洲精久久久久久| 亚洲免费av电影|